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Advances in experiments on dilute ultracold atomic gases have given us access to

highly tunable quantum systems. In particular, there have been substantial im-

provements in achieving different kinds of interaction between atoms. As a result,

utracold atomic gases offer an ideal platform to simulate many-body phenomena

in condensed matter physics, and engineer other novel phenomena that are a result

of the exotic interactions produced between atoms.

In this dissertation, I present a series of studies that explore the physics of

dilute ultracold atomic gases in different settings. In each setting, I explore a

different form of the inter-particle interaction. Motivated by experiments which

induce artificial spin-orbit coupling for cold fermions, I explore this system in my

first project. In this project, I propose a method to perform universal quantum

computation using the excitations of interacting spin-orbit coupled fermions, in

which effective p-wave interactions lead to the formation of a topological superfluid.

Motivated by experiments which explore the physics of exotic interactions between

atoms trapped inside optical cavities, I explore this system in a second project. I

calculate the phase diagram of lattice bosons trapped in an optical cavity, where

the cavity modes mediates effective global range checkerboard interactions between

the atoms. I compare this phase diagram with one that was recently measured

experimentally. In two other projects, I explore quantum simulation of condensed

matter phenomena due to spin-dependent interactions between particles. I propose

a method to produce tunable spin-dependent interactions between atoms, using an



optical Feshbach resonance. In one project, I use these spin-dependent interactions

in an ultracold Bose-Fermi system, and propose a method to produce the Kondo

model. I propose an experiment to directly observe the Kondo effect in this system.

In another project, I propose using lattice bosons with a large hyperfine spin, which

have Feshbach-induced spin-dependent interactions, to produce a quantum dimer

model. I propose an experiment to detect the ground state in this system. In a

final project, I develop tools to simulate the dynamics of fermionic superfluids in

which fermions interact via a short-range interaction.
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6.1 Dynamics of a strongly interacting Fermi gas during a time-of-flight
expansion in the x direction. The gas is initialized in a weak har-
monic trap of frequency ω in the x direction, and tight traps in the
y and z directions. During the expansion, only the trap in the x
direction is switched off. (a,b) Density and order parameter of the
Fermi gas versus x at y = z = 0, computed by numerically integrat-
ing the equations of motion for Wσ and F [Eq. (6.14)]. The density
is normalized by the density at the centre of the trap at t = 0. (c)
Order parameter computed by numerically integrating the Gross
Pitaevskii equation [Eq. (6.26)]. In the figures, x0 =

√
~/mω is

the harmonic oscillator length. The blue, pink, and yellow curves
correspond to t = 0, 10~/µ, and 20~/µ, where the expansion began
at t = 0. For typical trap frequencies ω ∼ 30 Hz, and system sizes
∼ 1 mm for ultracold gases, 20~/µ corresponds to about 12 ms of
expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Dynamics of a strongly interacting Fermi gas during a time-of-flight
expansion in the x direction. The gas is initialized in a weak har-
monic trap of frequency ω in the x direction, and tight traps in
the y and z directions. The gas is also initialized to have a soliton.
During the expansion, only the trap in the x direction is switched
off. (a,b) Density and order parameter of the Fermi gas versus x
at y = z = 0, computed by numerically integrating the equations
of motion for Wσ and F [Eq. (6.14)]. The density is normalized by
the maximum density in the trap at t = 0. (c) Order parameter
computed by numerically integrating the Gross Pitaevskii equation
[Eq. (6.26)]. In the figures, x0 =

√
~/mω is the harmonic os-

cillator length. The blue, pink, and yellow curves correspond to
t = 0, 10~/µ, and 20~/µ, where the expansion began at t = 0. For
typical trap frequencies ω ∼ 30 Hz, and system sizes ∼ 1 mm for
ultracold gases, 20~/µ corresponds to about 12 ms of expansion. . 110

xvi



6.3 Dynamics of a weakly interacting Fermi gas during a time-of-flight
expansion in the x direction. The gas is initialized in a weak har-
monic trap of frequency ω in the x direction, and tight traps in
the y and z directions. During the expansion, only the trap in
the x direction is switched off. (a,b): Density and order param-
eter of the Fermi gas versus x at y = z = 0, computed by nu-
merically integrating the equations of motion for Wσ and F [Eq.
(6.14)]. (c,d): Density and order parameter of the Fermi gas versus
x at y = z = 0, computed by numerically integrating the time-
dependent Bogoliubov-de-Gennes equations [Eq. (6.6)]. The den-
sity in (a) and (c) is normalized by the density at the centre of
the trap at t = 0. The blue and pink curves correspond to t = 0
and 5~/µ, where the expansion began at t = 0. At t = 5~/µ,
the numerical integration in (a) and (b) develops errors due to the
truncation of Eq. (6.14) at second derivatives. For typical trap fre-
quencies ω ∼ 30 Hz, and system sizes ∼ 1 mm for ultracold gases,
5~/µ corresponds to about 3 ms of expansion. . . . . . . . . . . . . 111

A.1 (Color online) Schematic of a deep spin-dependent lattice and a
transverse magnetic field. . . . . . . . . . . . . . . . . . . . . . . . 125

C.1 In our integrals, time begins at 0, passes through t, then returns to
0. Our perturbation theory requires ordering operators along this
path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.2 Diagrammatic representation of vertex and propagators. (a) Solid
line denotes a fermion propagator which propagates a fermion with
momentum k and spin projection α from time t2 to t1. (b) Dashed
line denotes a boson propagator which propagates a boson with
momentum k and spin projection µ from time t2 to t1. (c) A ver-
tex denotes the matrix element for a Bose-Fermi scattering event.
Mathematical expressions are given in Eqs.(C.3) and (C.4). . . . . 134

C.3 Zeroth-order diagram in the expansion for nkαm(t). . . . . . . . . . 135
C.4 First order diagrams in the expansion of nkαm(t). . . . . . . . . . . 136
C.5 Two of the diagrams that are zero at second order. . . . . . . . . . 136
C.6 Nonzero diagrams at O(g2) in the expansion for nkαm(t). . . . . . . 137
C.7 Non-zero diagrams at O(g3) in the expansion for nkαm(t). . . . . . 139

D.1 (Color online) Examples of transition graphs between non-
orthogonal singlet coverings. The magnitude of the overlap is given
by Eq. (D.1). The overlap Sab comes from 1 loop of length 4 (since
it involves 4 sites), and represents the largest possible overlap. The
overlap Sac comes from 1 loop of length 6 (since it involves 6 sites).
In the large-f limit all singlet coverings become orthogonal. . . . . 143

xvii



D.2 (Color online) Pictorial representation of an orthogonal dimer state
constructed from non-orthogonal singlet coverings, expressed in Eq.
(5.5). A dimer state |ā〉 and its associated singlet covering |a〉 differ
by O(f−1) contribution from all coverings |b〉 which differ from |a〉
by two bonds in a flippable plaquette. . . . . . . . . . . . . . . . . 143

xviii



CHAPTER 1

INTRODUCTION

I like solving puzzles, and I like to believe all physicists do. My approach to

solving puzzles is to break it down to its simplest form, and address the essential

elements of the puzzle. I have learned to use the same approach to tackle physics

problems during my doctoral research. Researchers in physics are experts in for-

mulating simple effective models to describe physical systems. In the 1990s, atomic

physicists went to extraordinary lengths to create the simplest form of quantum

degenerate matter, a Bose Einstein condensate. In a Bose Einstein condensate

(BEC), all its components want to do the same thing. The BEC is like a simple

toy which we completely understand, or at least we think we do. In the field of

ultracold atoms, we build more components to the toy, and understand how the

toy works at each step. Our goal is to keep building the toy until it mimics a giant

skyscraper, and understand the structure of the skyscraper. In this analogy, the

skyscraper is often a condensed matter system or phenomenon. Condensed matter

physicists have been chipping away at these skyscrapers for decades to bare its in-

terior, and formulate the simplest model to describe these systems or phenomena.

The crucial advantage with cold atoms is that we added each component of the toy

skyscraper, and we know exactly what went in. In this dissertation, I will describe

my efforts at designing a few of these skyscrapers, and my efforts at understanding

skyscrapers that sometimes were built by others.

The toys in my analogy are Bose gases, Bose Einstein condensates, degener-

ate Fermi gases, and fermionic superfuids. The additional layers we add to the

toys are Raman lasers, Feshbach resonances, optical cavities, and optical lattices.

The skyscrapers I refer to are topological superfluids with exotic Majorana excita-
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tions, the Kondo effect, fermionic superfluids, driven quantum systems with novel

supersolid and charge density wave phases of matter, and magnetically ordered

quantum dimer phases. All of these studies have been possible due to significant

experimental advances in cooling dilute quantum gases, and developing tools to

manipulate and measure their properties with high accuracy.

In my analogy, I have likened condensed matter phenomena to skyscrapers

because they are difficult to understand. The difficulty arises from the fact that

these phenomena are a consequence of many particles interacting with each other

in a complicated way. Cold neutral atoms, however, have weak van der Waals

interactions, which are short ranged. The typical range of the van der Waals

interaction is a few Angstrom, while the typical inter-particle spacing in a dilute

ultracold gas is a few microns. The strength of the short range interaction is

parameterized by the s-wave scattering length. A typical s-wave scattering length

is a few hundred Bohr, which is also small compared to the inter-particle spacing in

dilute gases. However, researchers on ultracold gases can tune the strength, range,

and nature of interactions between neutral atoms using several different techniques.

Below, we mention some common techniques used to tune atomic interactions.

In one technique, researchers tune their ultracold gas near a Feshbach resonance

to make the atomic interactions stronger. In such an experiment, the researchers

tune the relative energies of the open channel scattering state and a closed chan-

nel molecular bound state via a magnetic field or other control parameters. A

Feshbach resonance still produces short range interactions between atoms in the

s-wave channel. In a second technique, researchers tune the nature of the interac-

tions by tuning the single particle physics. For example, by loading fermions into

a state which is dressed by Raman lasers, the fermions can be made to interact
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via long-range interactions in the p-wave channel. One could also use different

species of particles, such as molecules with large dipole moments, to obtain long

range interactions between the particles. Another method is to induce interactions

between atoms, mediated via other particles, such as photons. For example, atoms

trapped inside a transversely pumped superradiant optical cavity experience ef-

fective interactions that is mediated by the light in the cavity. Finally, virtual

hopping of atoms between adjacent sites on a deep lattice is also used to produce

novel forms of effective nearest-neighbor interactions between atoms, which drives

the formation of exotic phases of matter.

In my dissertation, I have explored several topically relevant questions regarding

ultracold atoms. In each case, we find novel physics arising out of the novel nature

of the atom-atom interactions produced by using one of the above techniques. Some

of my studies have the goal of modeling a certain experiment that was recently

performed, and some of my studies propose novel experiments to observe exotic

phenomena that occur in condensed matter systems. This dissertation is presented

as a collection of these studies. This collection is not presented in chronological

order.

In Chapter 2, we explore the physics of exotic Majorana excitations at the

edges of one dimensional topological fermionic superfluids. Researchers induce

artificial spin-orbit coupling in quasi- one dimensional Fermi gases by dressing them

with Raman lasers. Researchers tune the short-range interactions between the

fermions in hyperfine states by trapping them in a lattice. In the basis of dressed

states created by the Raman lasers, this short-range interaction gets projected

into a long-range interaction in the p-wave channel. In this way, researchers can

create topological p-wave superfluids. These topological superfluids will have a
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doubly degenerate ground state, which contains exotic Majorana modes at their

edges. The long range entanglement between the Majorana modes encodes one

qubit of information, which is believed to be topologically protected against errors.

We describe how microwave spectroscopy can be used to detect, manipulate, and

entangle these Majorana excitations. Moreover, the microwaves rotate the system

in its degenerate ground state manifold. We use these rotations to implement a set

of universal quantum gates, allowing the system to be used as a universal quantum

computer. This chapter is adapted from a peer-reviewed article, Physical Review

A 88, 063632 (2013), which was co-authored with Prof. Erich Mueller.

In Chapter 3, we explore the physics of lattice bosons with infinite range in-

teractions. This study is motivated by, and models, experiments performed by

Landig et al. at ETH Zurich [86]. In this experiment, the researchers have in-

novated a novel way to produce infinite range interactions between atoms. The

researchers loaded a two-dimensional Bose gas in an optical lattice, trapped inside

a single mode superradiant Fabry-Perot cavity. The atoms experience an effective

infinite-range checkerboard interaction mediated by the light in the cavity. The

infinite-range interaction, short-range interaction, and quantum tunneling produce

competition between Mott insulator, charge-density wave, superfluid, and super-

solid phases. We calculate the phase diagram of this Bose gas in a homogeneous

system and in the presence of a harmonic trap. We compare our results with the

experimentally measured phase diagram [86]. This chapter is adapted from a peer-

reviewed article, Physical Review A 94, 033631 (2016), which was co-authored with

Prof. Erich Mueller.

In Chapter 4, we propose a method to realize the Kondo effect using ultra-

cold atoms. The Kondo effect is a transport anomaly that arises when itinerant
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fermions have spin-dependent interactions with magnetic impurities. It was first

observed in alloys which have magnetic impurities. The anomaly is that the elec-

trical resistance of these alloys has a minimum at a characteristic temperature, and

a logarithmic temperature dependence at low temperatures. We propose using an

optical Feshbach resonance to engineer Kondo-type spin-dependent interactions

in a system with ultracold fermionic 6Li and dilite bosonic 87Rb gases. We also

propose a scattering experiment to directly observe the Kondo effect in this sys-

tem. This chapter is adapted from a peer-reviewed article, Physical Review A 93,

023635 (2016), which was co-authored with Prof. Erich Mueller.

In Chapter 5, we propose a method to produce an archetypical quantum dimer

model using ultracold atoms. Quantum dimer models have a rich variety of novel

phases, including spin liquids, and valence bond solids with large unit cells. The

spin liquid phases are said to be precursors to high-temperature superconductors,

but have not been conclusively observed in condensed matter systems. In our

proposal, we consider a gas of bosons with a large hyperfine spin, loaded in a

deep optical lattice. Candidate bosonic species could be 87Rb or 52Cr. We use

an optical Feshbach resonance to engineer short range spin-dependent interactions

between the atoms. We show that by adjusting the parameters of the Feshbach

resonance, we can produce a system whose effective low energy theory is a quantum

dimer model. We discuss the ground state for experimentally accessible parameters

relevant to our proposal. We also propose an experiment to infer the ground state.

The work in the chapter was done in collaboration with Prof. Erich Mueller, Prof.

Michael Lawler, and Todd Rutkowski. At the time of writing this dissertation,

this chapter is being written up for publication in a peer-reviewed journal, in co-

authorship with the collaborators.
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Finally, in Chapter 6, we explore a semiclassical approach to quantum

mechanics in a study of the dynamics of a fermionic superfluid. Dynamics

of fermionic superfluids are often computed by numerically integrating time-

dependent Bogoliubov-de-Gennes equations. This integration is often difficult. We

develop alternative, complementary tools to compute this dynamics. These tools

are based on Wigner functions, whose equations of motion resemble semiclassical

Boltman equations. We show that in the limit of strongly interacting fermions,

the semiclassical equations of motion lead to the Gross Pitaevskii equation. We

verify the efficiency of the tools we developed by comparing numerical results ob-

tained from numerically integrating time-dependent Bogoliubov-de-Gennes, Gross-

Pitaevskii, and semiclassical Boltzman equations. For the numerics, we focused on

time-of-flight expansions of fermionic superfluids. Our work has potential applica-

tions in all calculations of dynamics of Fermi gases. This work was motivated by

several experiments in the the groups of Martin Zwierlein and Randy Hulet, who

study solitons in images taken after a time-of-flight expansion. The work in this

chapter was done in collaboration with Prof. Erich Mueller.

We summarize in Chapter 7. We also review the experimental progress made

in all of the topics of my study, in the years intervening between the completion

of our projects and the writing of this dissertation.
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CHAPTER 2

UNIVERSAL QUANTUM COMPUTATION WITH MAJORANA

FERMION EDGE MODES THROUGH MICROWAVE

SPECTROSCOPY OF QUASI-1D COLD GASES IN OPTICAL

LATTICES

MANY-BODY PHYSICS USING COLD ATOMS

Bhuvanesh Sundar, Ph.D.

Cornell University 2016

We describe how microwave spectroscopy of cold fermions in quasi-1D traps can

be used to detect, manipulate, and entangle exotic nonlocal qubits associated with

“Majorana” edge modes. We present different approaches to generate the p-wave

superfluidity which is responsible for these topological zero-energy edge modes.

We find that the edge modes have clear signatures in the microwave spectrum,

and that the line shape distinguishes between the degenerate states of a qubit

encoded in these edge modes. Moreover, the microwaves rotate the system in its

degenerate ground-state manifold. We use these rotations to implement a set of

universal quantum gates, allowing the system to be used as a universal quantum

computer. The work in this chapter was done in collaboration with Prof. Erich

Mueller. This chapter is adapted from a peer-reviewed article, Physical Review A

88, 063632 (2013), which was co-authored with Prof. Erich Mueller.



In condensed-matter physics, Majorana fermions are exotic collective excita-

tions that possess non-Abelian braiding statistics and are “topologically protected”

[119]. They can be used to realize fault-tolerant quantum bits (qubits), an essential

ingredient for quantum computing. In this study, we propose a scheme in which

microwaves are used to detect Majorana modes in a cold Fermi gas, read out the

state of the system, and perform quantum gates.

In a seminal paper, Kitaev showed that one-dimensional (1D) p-wave superflu-

ids support zero-energy Majorana fermion excitations at their edges [78]. Moti-

vated in part by these arguments, researchers have searched for (and found) evi-

dence of Majorana modes in spin-orbit coupled nanowires with proximity-induced

superconductivity [114, 136]. In ultracold atomic systems, researchers are attempt-

ing to produce Majorana modes using Raman-induced spin-orbit coupling [24, 158].

They have created spin-orbit coupled systems with strongly interacting fermions

and measured their radio-frequency spectra [52]. Our proposal builds on these de-

velopments. We explain how p-wave superfluidity can be induced in quasi-1D cold

gases, and study the interactions of these systems with microwaves. In particular,

we describe protocols to produce a set of universal quantum gates.

The ground state of a 1D p-wave superfluid is doubly degenerate. These two

ground states can be used as a qubit. The information encoded in this qubit is

nonlocal: These states can be distinguished by simultaneously probing the two

boundaries of the system or by measuring particle number parity. Mathematically

one describes the system as having a Majorana mode at each edge and attributes

the degeneracy to these Majorana degrees of freedom.

Detecting Majorana modes is a major challenge and has attracted wide the-

oretical and experimental interest [114, 136, 159, 145, 173, 72, 152, 84, 102]. In
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order to use Majorana edge states as qubits, one must also have the capability to

perform projective measurements and quantum gate operations in the degenerate

ground-state manifold. Here we note that optical, microwave, or radio probes co-

herently interact with well-separated regions of a cold-gas system and can be used

for detecting and manipulating the delocalized quantum information. We show

that the system’s microwave-absorption spectrum measures the qubit and show

that microwaves also rotate the qubit.

We emphasize that while other spectroscopic techniques can detect the ex-

istence of Majorana modes, the microwave absorption spectroscopy studied here

can do more: It allows us to measure and manipulate the stored quantum informa-

tion. Further, while other theoretical studies have explored manipulation of this

stored information by interactions of Majorana fermions with microwave cavities

[140, 141], we do more: We describe methods to produce all the necessary single-

and two-qubit quantum gates for universal quantum computation including initial-

ization and measurement and describe a general framework for producing arbitrary

rotations of the qubits.

We envision two possible experimental geometries of superfluids that support

Majorana fermions. One geometry consists of a 2D array of 1D superfluid wires

with weak interwire tunneling. We believe this is the most experimentally acces-

sible geometry for creating Majorana fermions in cold gases. Multiple wires are

advantageous because they enhance the measured signal. Moreover, the interwire

tunneling stabilizes long-range superfluid order and allows a mean-field treatment

of each wire. The other geometry consists of a single wire embedded in a 3D super-

fluid bath. While the linear response to microwaves in this geometry is the same

as that for an array of wires, the dynamics beyond linear response are different
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in these two cases. The protocols necessary for quantum computations work bet-

ter in this latter geometry. Further the latter geometry connects more closely to

experiments with evidence of Majorana fermions in solid state systems.

This chapter is organized as follows. In Sec. 2.1 we briefly review experimental

scenarios to realize p-wave superfluidity in arrays of coupled wires and in wires

in proximity to a superfluid cloud. In Sec. 2.2 we present our theoretical model

for these systems. In Sec. 2.3 we explore the single-particle excitations in this

model. In Sec. 2.4 we specialize to the Majorana modes. In Sec. 2.5 we calculate

the response of the system to a microwave probe. In Secs. 2.6–2.8 we explain

how to implement various quantum gates on single qubits. In Sec. 2.6 we explore

the relative time scales required for performing different gate operations. In Sec.

2.7 we discuss our numerical methods for studying the dynamics of the system

during gate operations. In Sec. 2.8 we discuss quantum gates through microwave

illumination of qubits. In Sec. 2.9 we describe an architecture and algorithms to

implement all the quantum gates necessary for universal quantum computation in

this system. We summarize in Sec. 2.10.

2.1 Experimental setup

We consider two possible geometries of cold neutral fermionic atoms or molecules

that will have Majorana fermion excitations at their edges, a 2D array of 1D wires

created by a highly anisotropic optical lattice and a 1D potential valley on the

surface of an atom chip embedded in a large 3D superfluid cloud. In the first

geometry a weak interwire tunneling stabilizes superfluidity in the wires. In the

second geometry superfluidity is induced in the wire due to the proximity effect.
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Below we propose experimental implementations of these two geometries. We

discuss methods to create p-wave superfluids in these geometries. We supplement

these discussions with calculations of experimental parameters in the coupled-wire

geometry.

2.1.1 Coupled Wires

First we study a fermionic gas trapped in a 2D array of 1D wires created by a

highly anisotropic optical lattice: hopping in the y and z directions is strongly

suppressed compared to that in the x direction. Such an array is readily produced

by interfering several lasers [95]. p-wave superfluidity will be favored if there are

strong nearest-neighbor interactions in each wire. Below we review a few methods

to generate such interactions. In Appendix A.1 we calculate the superfluid gap (∆)

created by these interactions. For our proposals to work, we would like the gap ∆

to be such that ∆/kB is on the order of or larger than a few nanokelvins, which is

the typical temperature of these gases. For reference, ~ · 1 kHz = kB · 7.64 nK.

The conceptually simplest way to generate nearest-neighbor (or longer-ranged)

interactions involves using neutral molecules such as KRb or LiCs that have large

dipole moments [11]. Interactions between the molecules can be controlled by

applying an electric field, which adjusts the alignment of their dipole moments.

The dipole moments of these molecules are typically of the order of 10 D, which

creates interactions of strengths in the kHz range between nearest neighbors on a

lattice with lattice spacing of a few µm. As shown in Appendix A.1, the superfluid

gap will then be in the kHz range.

A second method to create nearest-neighbor interactions uses spin-orbit coupled
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atoms in the lower helicity state. Here one shines two counter propagating lasers on

two spin species of fermionic atoms such as 40K or 6Li. The resulting dressed atomic

levels are described by a Hamiltonian analogous to spin-orbit coupled electrons in

a semiconducting wire. When projected into the lower dressed band, effective

separable long-range atomic interactions emerge [158]. Current experiments using

40K [158] achieve spin-orbit coupling strengths and Zeeman splitting between the

dressed states in the kHz range. In Appendix A.1 we show that the resulting

superfluid gap will be of order kHz.

A third method to create nearest-neighbor interactions is to engineer significant

overlap of Wannier functions at adjacent lattice sites. One such example is to use

spin-dependent lattices, outlined in [145]. We show in Appendix A.1 that the

resulting superfluid gap would be of order MHz.

All of the methods outlined above create effectively spinless fermions in one

band “a” which have interactions that extend beyond a single site. While these

techniques generate interactions of various ranges, the essential physics is captured

by a model with only nearest-neighbor interactions. We work with this simplified

model.

2.1.2 Proximity-Induced Superfluid

We also consider a geometry where a single wire is immersed in a superfluid cloud.

Superfluidity is induced in the wire due to the proximity effect. This is the geom-

etry realized in solid-state experiments, where semiconductor wires are in contact

with a superconductor [114]. One way to realize this geometry in a gas of cold

atoms is to put an s-wave superfluid of 6Li or 40K near an atom chip [123]. Current-
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carrying wires on the atom chip create a 1D potential valley for the atoms. We

envision a bimodal population, with a large 3D cloud surrounding a tightly con-

fined 1D gas. We artificially induce spin-orbit coupling in the 1D gas by shining

Raman lasers along the potential valley. By keeping the beam waist small, the

Raman lasers have minimal effect on the 3D cloud. If desired, an optical lattice

can be added to the potential valley. The superfluid cloud acts as a bath of Cooper

pairs which tunnel into the 1D wire; hence, a superfluid order parameter is induced

in the chain of atoms. The artificially induced spin-orbit coupling projects these

pairs onto dressed bands. In the lower dressed band the induced order parameter

has p-wave character.

2.1.3 Trap and Probe

Most experiments in both geometries are performed in the presence of harmonic

potentials. As explicitly shown by Wei and Mueller [159] for the case of spin-orbit

coupled atoms, the physics of Majorana fermions in a harmonic trap is identical

to that in an infinite square well. Experimentally infinite square wells can be

engineered with “tube beams” and “sheet beams” [55]. For simplicity, we predom-

inantly model the confinement as an infinite square well. In Sec. 2.5.3 we also

include calculations in a harmonic trap.

To probe the Majorana modes in the 1D superfluid, we propose driving a tran-

sition to another atomic state “c” by shining electromagnetic waves on the system.

We consider the case of microwaves or radiowaves, where the wavelength is larger

than the system size (0.1− 1mm). If the bandwidth of the Bloch waves in the “c”

states is small compared to ∆, we find that the spectral signature of the Majorana

modes is well separated from the bulk modes, and the spectral line shape can dis-
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tinguish which of the two degenerate ground states is present. Researchers have

been able to create spin-dependent lattices with different bandwidths for different

hyperfine states of bosonic atoms [101]. We anticipate that similar techniques can

be used to independently control the bandwidths of the fermionic “a” and “c”

states in our system as well.

2.2 Theoretical model

The two geometries discussed in the previous section are modeled by slightly differ-

ent effective Hamiltonians. The cause of the difference is the mechanism inducing

superfluidity in the wires. In the coupled-wire geometry, the superfluid order pa-

rameter ∆ is determined self-consistently from the properties of the wires, while in

the case of a proximity-induced superfluid, ∆ is imposed by the surrounding bath.

Below we present the Hamiltonian governing our system in these two cases.

2.2.1 Coupled Wires

The ensemble of wires described in Sec. 2.1.1 is modeled by the effective Hamilto-

nian

Ĥ = Ĥa + Ĥc + ĤMW + Ĥiw. (2.1)

The atoms in the “a” states are described by a tight-binding model,

Ĥa =
∑

i

N−1∑

j=1

−J
(
â

(i)†
j â

(i)
j+1 + â

(i)†
j+1â

(i)
j

)
+ V â

(i)†
j â

(i)†
j+1â

(i)
j+1â

(i)
j −

∑

i

N∑

j=1

µâ
(i)†
j â

(i)
j ,

(2.2)

where J is the hopping amplitude, V is the nearest-neighbor interaction strength,

µ is the chemical potential, and â
(i)†
j and â

(i)
j create and annihilate spinless fermions
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in the “a” state at site j in the ith wire. We model the interwire coupling via

Ĥiw =
∑

<ii′>

N∑

j=1

−J ′
(
â

(i)†
j â

(i′)
j + â

(i′)†
j â

(i)
j

)
+ V ′â(i)†

j â
(i′)†
j â

(i′)
j â

(i)
j (2.3)

where J ′ and V ′ parametrize the interwire hopping and interactions, respectively.

All adjacent pairs of wires 〈ii′〉 are summed over. In the limit of J ′ << J and

V ′ << V , Ĥiw has only a perturbative role in this mean-field theory and can be

neglected. Under a mean-field approximation, each wire is then equivalent, and we

can drop the index labeling the wires from our operators. We emphasize, however,

that the presence of this interwire hopping is important as it stabilizes long-range

order and justifies our mean-field approximation. The mean-field Hamiltonian

describing the “a” atoms or molecules is then

ĤMF = E0 +
N−1∑

j=1

[
− J

(
â†j âj+1 + â†j+1âj

)
−
(

∆j â
†
j â
†
j+1 + ∆∗j âj+1âj

) ]
−

N∑

j=1

µâ†j âj,

(2.4)

where the local order parameter ∆j is defined self-consistently as

∆j = −V 〈âj+1âj〉, (2.5)

and E0 is an irrelevant energy shift. ∆j can always be chosen to be real and

positive by a local gauge transformation of the creation and annihilation operators

of the “a” atoms or molecules. Moreover, one can also take ∆j to be symmetric

under reflection, ∆j = ∆N−j.

Microwaves can change the internal state of the atoms or molecules, introducing

a term in the Hamiltonian of the form

ĤMW = Ω
N∑

j=1

(
ĉ†j âje

−iωt + â†j ĉje
iωt
)
. (2.6)

The operators ĉj and ĉ†j correspond to excited atoms or molecules. These excited

particles generally feel a different lattice, and are described by a tight-binding
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model

Ĥc =
∑

j

−Jc
(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
− µcĉ†j ĉj, (2.7)

where Jc is the hopping amplitude and µc is the chemical potential. The frequency

ω in Eq. (2.6) is related to the real frequency of electromagnetic waves via

ω = ωphysical − δε+ µ− µc, (2.8)

where ωphysical is the real electromagnetic frequency and δε is the absorption fre-

quency in free space.

2.2.2 Proximity-Induced Superfluid

A proximity-induced superfluid will be governed by the effective Hamiltonian

Ĥ = Ĥa + Ĥc + ĤMW. (2.9)

The “a” states are described by a tight-binding model

Ĥa =
N−1∑

j=1

[
−J

(
â†j âj+1 + â†j+1âj

)
−
(

∆j â
†
j â
†
j+1 + ∆∗j âj+1âj

) ]
−

N∑

j=1

µâ†j âj, (2.10)

where J is the hopping amplitude, ∆j is the order parameter induced at site j

from the bath, µ is the chemical potential, and â†j and âj create and annihilate

spinless fermions in the “a” state at site j in the wire. ĤMW and Ĥc are given

by Eqs. (2.6) and (2.7). The model for proximity-induced superfluids is simpler

because as long as the bath is large enough, ∆j are constant parameters and need

not be self-consistently determined from the properties of the wire.
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2.2.3 Other Considerations

In this study we analyze the case where interactions between “a” and “c” atoms

or molecules can be neglected. For example, this would be the case for spin-

orbit coupled 40K near a Feshbach resonance. Such final-state interactions can be

modeled by using the techniques from [13].

2.3 Bogoliubov excitations

In this section, we analyze the quasiparticles of the mean-field theory. We give

particular emphasis to their properties under reflection and derive relations that

will be useful in the next section. We explore the local density of states associated

with our mean-field model in Eqs. (2.4) and (2.10) and verify that a zero-energy

mode appears at the boundaries. We include a brief qualitative discussion of the

full coupled-wire model with the interwire coupling at the end of this section.

Equations (2.4) and (2.10) can be rewritten as

ĤMF = E ′0 +
∑

ν

Eν γ̂
†
ν γ̂ν , (2.11)

where E ′0 is an irrelevant energy shift. The creation operator for the quasiparticles,

which are superpositions of particles and holes, are of the form

γ̂†ν =
N∑

j=1

uν(j)â
†
j + vν(j)âj, (2.12)

where N is the number of sites. Since all the parameters in our mean-field model

are real, we can always choose uν(j) and vν(j) to be real.

The coherence factors uν(j) and vν(j) at different sites are not completely

independent of each other. We consider an operator that performs a simultaneous
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reflection and a global gauge transformation,

Q̂âjQ̂
† = iâN+1−j. (2.13)

Under the assumption that ∆j = ∆N−j, this operator represents a symmetry of the

mean-field Hamiltonian, [Q̂, ĤMF] = 0. Barring any degeneracies, this symmetry

implies that [Q̂, γ̂†ν γ̂ν ] = 0 ∀ν. Consequently, Q̂ acts a gauge transformation on

the quasiparticle operators, Q̂γ̂†νQ̂
† = λν γ̂

†
ν . Direct computation starting from Eq.

(2.13) yields Q̂2γ̂†νQ̂
†2 = −γ̂†ν . Hence, λν = ±i. When λν = −i, uν(j) is symmetric

under reflection and vν(j) is antisymmetric under reflection: uν(N + 1 − j) =

uν(j), vν(N + 1 − j) = −vν(j). In this case the quasiparticle creation operators

have the form

γ̂(s)†
ν =

∑

j

f (s)
ν (j)

â†j + âj + â†N+1−j − âN+1−j

2
, (2.14)

where f
(s)
ν (j) = uν(j)+vν(j). When λν = i, uν(j) is antisymmetric under reflection

and vν(j) is symmetric under reflection: uν(N + 1− j) = −uν(j), vν(N + 1− j) =

vν(j). In this case the quasiparticle creation operators have the form

γ̂(a)†
ν =

∑

j

f (a)
ν (j)

âj + â†j + âN+1−j − â†N+1−j
2

, (2.15)

where again f
(a)
ν (j) = uν(j) + vν(j). These modified forms will be helpful in our

analysis of Majorana modes in Sec. 2.4.

The local density of states in the superfluid at energy E and position j is given

by

A(j, E) = 2Im

(
〈âj

1

E − Ĥ
â†j〉+ 〈â†j

1

E + Ĥ
âj〉
)

= 2π
∑

ν

[
|uν(j)|2δ(E − Eν) + |vν(j)|2δ(E + Eν)

]
,

(2.16)

where δ is the Dirac δ function, and all quasiparticle indices ν have been summed

over. We illustrate this density of states in Fig. 2.1, marking a point in the
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position-energy plane at the locations of the Dirac δ functions, with darker points

representing higher amplitudes of the δ functions. The pair of zero-energy peaks

visible in Fig. 2.1 are Majorana modes. These Majorana modes are zero-energy

solutions to the Bogoliubov-deGennes equations, that are exponentially localized at

the two ends [78]. They always occur in pairs at opposite ends of the 1D superfluid

and are always found if |µ| < 2J , where the superfluid is in a topologically non-

trivial phase.

Figure 2.1: Local single-particle density of states for the mean-field model in Eq.
(2.10) with parameters ∆j = µ = 0.25J,N = 50. The local density of states is a
sum of Dirac δ functions. Darker shades represent higher amplitudes of the Dirac
δ functions. We can observe bulk quasiparticles with Eν > 0 and zero-energy
(Eν = 0) excitations at the edges. These zero-energy modes are Majorana modes.

To explore the robustness of these spectra, we also carried out the analogous
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calculation using a multi-wire mean field theory,

ĤMWMF =
∑

i

N∑

j=1

[−J
(
â

(i)†
j â

(i)
j+1 + â

(i)†
j+1â

(i)
j

)
−
(

∆j â
(i)†
j â

(i)†
j+1 + ∆∗j â

(i)
j+1â

(i)
j

)
− µâ(i)†

j â
(i)
j ]

− J ′
∑

〈ii′〉

N∑

j=1

(
â

(i)†
j â

(i+1)
j + â

(i+1)†
j â

(i)
j

)

(2.17)

with J and ∆j comparable in magnitude and µ = 0. The interwire coupling J ′

has very little effect on the spectrum, even when it is a sizable fraction of J .

In particular, the edge modes stay at zero energy. Hence, our assumption that

Ĥiw only plays a perturbative role is valid, and it is sufficient to work with our

mean-field model in Eqs. (2.4) and (2.10) hereafter.

2.4 Majorana modes

The Eν = 0 quasiparticle in Eq. (2.11) is composed of two Majorana modes. Since

this excitation is localized at the edges, we denote its creation operator by γ̂†edge.

There is an ambiguity in the definition of γ̂†edge, as the canonical transformation

γ̂edge → γ̂†edge, γ̂
†
edge → γ̂edge is a symmetry of the system. Somewhat arbitrarily, we

define γ̂†edge by its properties under Q̂, Q̂γ̂†edgeQ̂
† = −iγ̂†edge. With this choice,

γ̂†edge =
∑

j

f0(j)

(
â†j + âj

2
+ i

â†N+1−j − âN+1−j

2i

)
. (2.18)

The coherence factors f0(j) are real and satisfy

(J −∆j−1)f0(j − 1) + (J + ∆j)f0(j + 1) + µf0(j) = 0, 1 < j < N. (2.19)

For the proximity-induced case with uniform ∆j = ∆, the above equation can be
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solved explicitly [78]. The resulting solution has the form

f0(j) = α(xj+ − xj−), if x+, x− 6= 0 and 1
x+
, 1

x−
6= 0,

f0(j) = δj1, if x+ = x− = 0,

f0(j) = δjN , if 1
x+

= 1
x−

= 0,

(2.20)

where

x± =
µ

2(J + ∆)
±
√(

µ

2(J + ∆)

)2

+
∆− J
∆ + J

, (2.21)

α is a normalization constant, and δ is the Kronecker δ. A derivation of Eq. (2.20)

is provided in Appendix A.2. The coherence factors f0(j) exponentially decay

away from the boundaries. They are sharply peaked at j = 1 if ∆ > 0, and peaked

at j = N if ∆ < 0. Numerical solutions for the coupled-wire case where ∆j are

determined self-consistently usually result in nearly uniform ∆j = ∆. Therefore

the expressions in Eq. (2.20) are qualitatively applicable to the coupled-wire case

as well.

As explained by Kitaev [78], the physics is particularly simple if

µ = 0, V = −4J, (2.22)

parameters which yield uniform ∆j = J . For these parameters, the energy gap

for bulk Bogoliubov excitations is 2J and their bandwidth is zero. The coherence

factors are f0(j) = δj1. While the bulk of our calculations are performed for generic

parameters, this simple limit in Eq. (2.22) is useful for qualitatively understanding

the results.

Since γ̂†edge creates an excitation of zero energy, the mean-field models in

Eqs.(2.4) and (2.10) have two degenerate ground states, |g−〉 and |g+〉. We identify

|g−〉 with the quasiparticle vacuum, characterized by

γ̂ν |g−〉 = 0 ∀ν, (2.23)
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and then define

|g+〉 = γ̂†edge|g−〉. (2.24)

|g+〉 and |g−〉 are eigenstates of the particle number parity operator P̂ =

(−1)
∑
j â
†
j âj . For the choice of γ̂†edge we made in Eq. (2.18), P̂ |g+〉 = −|g+〉 and

P̂ |g−〉 = |g−〉. We use the states |g+〉 and |g−〉 to encode physical qubits.

In the case of multiple wires, we assume that all the wires are in the same state.

The statement that “the” qubit is in the state |g+〉 denotes that all the wires are

in |g+〉.

In the next section we show how to projectively measure physical qubits in the

basis of |g+〉 and |g−〉. We find in Sec. 2.8 that to perform universal quantum

computation, we need a more sophisticated architecture in which logical qubits

are constructed from more than one physical qubit. Manipulations of the logical

qubits consist of manipulations of the component physical qubits. In Secs. 2.6–2.8,

we describe algorithms for implementing quantum gates on physical qubits and the

logic behind them. Finally, in Sec. 2.9 we show how to perform universal quantum

computation using logical qubits constructed from physical qubits.

2.5 Absorption spectrum

The superfluid’s electromagnetic absorption spectrum is given by

Γ(|i〉, ω) =
∑

f

2π

~
|〈f |ĤMW|i〉|2δ(ω − (Ef − Ei)), (2.25)

where |i〉 is the initial state and |f〉 are the final states, and Ei and Ef are their

respective energies. The final states |f〉 have one quasiparticle of energy Eν and
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one atom in the excited state, created by

ĉ†k =
∑

j

ψk(j)ĉ
†
j, (2.26)

where ĉ†k diagonalize the tight-binding Hamiltonian in Eq. (2.7) for the excited

atoms:

Ĥc =
∑

k

εkĉ
†
kĉk. (2.27)

In the case of a translationally invariant system, k would label momentum. We

consider more generic cases here, and let k simply be a label of the excited states.

We denote the energies of the lowest and highest energy “c” states as min(εk) and

max(εk) and the bottom and top of the bulk “a” Bogoliubov spectrum as min(Eν)

and max(Eν), where we take Eν > 0; i.e, we exclude the zero-energy edge state in

defining these ranges. The bulk excitations contribute to the absorption spectrum

in Eq. (2.25) for min(εk)+min(Eν) < ω <max(εk)+max(Eν). The edge modes

contribute to the spectral weight in the range min(εk) < ω <max(εk). We consider

the case where these spectral features are well separated and restrict ourselves to

the edge spectrum.

In terms of the wave functions ψk(j), Eq. (2.25) simplifies to

Γ(|g±〉, ω) =
2π|Ω|2

~
∑

k

δ(ω − εk)×
∣∣∣∣∣
∑

j

f0(j) (ψk(j)± ψk(N + 1− j))
∣∣∣∣∣

2

, (2.28)

where f0(j) are the coherence factors for the edge state in Eq. (2.18), δ is the

Dirac δ function, and all excitation indices k and sites j have been summed over.

In the simple case where µ = 0,∆j = J , Eq. (2.28) further simplifies to

Γ(|g±〉, ω) =
2π|Ω|2

~
∑

k

|ψk(1)± ψk(N)|2δ(ω − εk). (2.29)

Equation (2.28) tell us that the amplitudes of electromagnetic absorption at the

two ends of the wire interfere with each other, and the phase associated with

23



absorption at the ends of the wire is different in the states |g+〉 and |g−〉. This

generically leads to different spectral weights Γ(|g+〉, ω) and Γ(|g−〉, ω), and enables

us to measure the state of the qubit. For an arbitrary superposition of the two

states, the spectral weight is given by

Γ(α|g+〉+ β|g−〉, ω) = |α|2Γ(|g+〉, ω) + |β|2Γ(|g−〉, ω). (2.30)

The wave functions ψk(j) depend on the how the “c” atoms are confined. In

the following, we discuss a range of boundary conditions on the “c” atoms.

2.5.1 Periodic Boundary Conditions

While difficult to implement experimentally, the simplest boundary conditions for

theoretical study are periodic. Specifically, we consider a case where the “a” atoms

are trapped by an optical lattice in a ring geometry consisting of N sites with lattice

spacing a. A potential barrier (for example, generated by a blue-detuned laser)

prevents hopping along one bond, providing edges to the system. We imagine that

the “c” atoms are also confined to a ring, but do not see the barrier.

In this geometry, the analysis is simple as the eigenstates in Eq. (2.26) are

plane waves with wave functions

ψk(j) =
eikrj√
N
, (2.31)

where rj is the position of the site labeled by j, and the quantized momenta k

obey eiNka = 1. The spectral weights are then given by

Γ(|g±〉, ω) =
2π|Ω|2
N~

∑

k

δ(ω − εk)×
∣∣∣∣∣
∑

j

f0(j)
(
eikrj ± eikae−ikrj

)
∣∣∣∣∣

2

, (2.32)
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where εk = −2Jc cos ka−µc, Jc is the hopping amplitude of the excited atoms, and

µc is the chemical potential. In this case |g+〉 and |g−〉 have clearly distinguishable

spectra. For example, at microwave frequency ω = −2Jc − µc, only the uniform

wave function (k = 0) contributes to the spectral weight, and Γ−(−2Jc − µc) = 0.

Similarly, Γ+(2Jc − µc) = 0.

In the special case of Eq. (2.22), where we took µ = 0 and ∆j = J ,

Γ(|g±〉, ω) =
−2|Ω|2
Jc~

−2Jc ± (ω + µc)√
(2Jc)2 − (ω + µc)2

. (2.33)

This spectrum is plotted in Fig. 2.2(a). For this special case, one sees that Γ+(ω) is

monotonically decreasing while Γ−(ω) is monotonically increasing. This behavior

is special to these parameters, and, as shown in Fig. 2.2(b), the spectra could, in

general, have a richer structure.

-2 0 2
x

1.5

3
y
a

-2 0 2
x

1.5
y
b

Figure 2.2: The electromagnetic absorption spectrum when atoms are excited from
the “a” state to the “c” state with periodic boundary conditions. The solid curve is
the absorption spectrum of |g+〉 and the dashed curve of |g−〉. Parameters chosen
in (a) are ∆j = J, µ = 0, N = 30, and in (b) are ∆j = J/2, µ = J/4, N = 30.
The parameters used in (b) are not a self-consistent solution of the mean-field
approximation [Eq. (2.19)]. If instead we find ∆j self-consistently, the spectra do
not change significantly.
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2.5.2 Infinite Square Well

Here we consider an experimentally simpler case where both the “a” and the “c”

atoms are trapped in a linear geometry by an optical lattice of length L and lattice

spacing a and with hard-wall boundary conditions. The wave functions of the “c”

atoms are

ψk(j) =

√
2 sin krj√
N

, (2.34)

where the allowed values of k are nπ/(N + 1) for integer values of n. The spectra,

given by

Γ(|g±〉, ω) =
4π|Ω|2
N~

∑

k

δ(ω − εk)×
∣∣∣∣∣
∑

j

f0(j) (sin krj ± sin k((N + 1)a− rj))
∣∣∣∣∣

2

,

(2.35)

now have a richer, inter-digitated structure. They are plotted in Fig. 2.3(a) for a

small lattice in the special case of Eq. (2.22), where f0(j) = δj1.
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Figure 2.3: The electromagnetic absorption spectrum when atoms are excited from
the “a” state to the “c” state with open boundary conditions. (a) The atoms are
trapped in a lattice with 10 sites and hard walls at its ends. (b) The atoms are
trapped in a harmonic trap so that the distance between the Majorana modes is
10 sites. In (b), µc refers to the chemical potential of the “c” atoms at the center
of the trap. The solid curve is the absorption spectrum of |g+〉, and the dashed
curve of |g−〉. Insets show the confining potential minus the optical lattice.

Figure 2.3 illustrates that the spectra exhibit N/2 oscillations within a fre-
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quency range equal to the bandwidth of the “c” atoms. As the system becomes

longer, the spectra develop more closely spaced oscillations. In the thermodynamic

limit, high-frequency resolution is needed to differentiate |g+〉 and |g−〉. Depending

on the bandwidth of the “c” atoms and the experimentally achievable frequency

resolution, this places an upper limit on the length of the superfluid. A lower limit

is placed by the hybridization of the edge modes. In experiments involving 1D op-

tical lattices [95], N is typically of the order of 100. As explained at the beginning

of this section, the bandwidth of the “c” atoms must be less than the superfluid

gap in order to separate the spectral features of the bulk and edge modes. As

explained in Sec. 2.1, the superfluid gap produced by different techniques is in

the kHz–MHz range. Therefore, the frequency resolution needed to resolve the

interdigitated absorption spectra is on the order of kHz.

2.5.3 Harmonic Traps

Finally we consider the most experimentally realistic case where both the “a” atoms

and “c” atoms are trapped by a harmonic potential. The effect of introducing a

harmonic trap is twofold: The individual peaks shift to higher frequencies while

the envelope shifts to lower frequencies [see Fig. 2.3(b)]. Qualitatively, however,

the spectrum is nearly indistinguishable from a hard-wall trap. We numerically

calculate and plot the result for a small lattice in a harmonic trap in Fig. 2.3(b).
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2.6 Dynamics

To use our system to process quantum information we need algorithms to im-

plement quantum gates. Here we construct gates based on microwave illumina-

tion. Each photon absorbed or emitted flips an atom between the “a” state and

the “c” state, creating a quasiparticle and changing the particle number parity

of the “a” atoms. In the appropriate frequency range, this parity change corre-

sponds to flipping between |g+〉 and |g−〉. We envision that we can utilize this

feature to perform gate operations. For example, if a microwave pulse is applied

to a qubit in a state |ψi〉 = α|g−〉 ⊗ |0〉 + β|g+〉 ⊗ |0〉, the qubit will evolve to

|ψf〉 = α(cosφ−|g−〉⊗|0〉+sinφ−|g+〉⊗|c1〉)+β(cosφ+|g+〉⊗|0〉+sinφ+|g−〉⊗|c2〉)

after a time t, where |0〉 is the vacuum of “c” atoms, |c1〉 and |c2〉 are single-particle

“c” states, and ⊗ is the Cartesian product.

In the strongly coupled regime Ω > Jc and the weakly coupled regime Ω <

Jc/N , we show in Sec. 2.8.2 that we can arrange φ− = ±π/2, φ+ = ±π/2 and

|c1〉 = |c2〉. Under these circumstances, the “c” atoms are disentangled from the

qubit, and we have produced an X or a Y gate (so named because they act as Pauli

operators σx or σy). The implementation of the X and Y gates will be explicitly

demonstrated in Sec. 2.8.2. Composing these operations yields a Z gate. We show

in Sec. 2.9 that more complicated (universal) gates can be implemented by using

composite logical qubits.

In the intermediate regime Jc > Ω > Jc/N , we show in Sec. 2.8.1 that can

arrange φ− = π/2, φ+ = 0. Here the final state will be |ψf〉 = |g+〉⊗ (α|c1〉+β|0〉).

The “c” atoms are in a superposition of number eigenstates, but because of the

product structure, they have no impact on future gate operations. Thus, this acts

as a SET gate which projectively initializes the qubit in |g+〉. To set the qubit in
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|g−〉, we arrange φ+ = π/2, φ− = 0.

Since the gates substantially change the state, they cannot be described by

linear response. This motivates us to study the full quantum dynamics in Sec.

2.7. In Sec. 2.8 we propose algorithms to implement various gates, and use the

numerical methods described in Sec. 2.7 to observe the dynamics during the gate

operations.

2.7 Numerical Methods

To study the dynamics of the system we work in the Heisenberg picture. Within

a mean-field approximation, the Heisenberg equations of motion,

i∂tâj(t) = [âj(t), Ĥ],

i∂tĉj(t) = [ĉj(t), Ĥ],
(2.36)

reduce to a matrix equation i∂tX(t) = H(t)X(t), where H(t) is a 4N×4N matrix,

and X(t) is a 4N × 1 vector that maps fermionic operators at time t to those at

t = 0,

(
â1(t) â2(t) .. âN(t) â†1(t) .. â†N(t) ĉ1(t) .. ĉ†N(t)

)T

= X(t)

(
â1(0) .. â†N(0) ĉ1(0) .. ĉ†N(0)

)T
. (2.37)

In a typical numerical experiment we take N ' 50. The matrix H(t) can be

computed from Eq. (2.36). We update X via X(t+ δt) = e−iHδtX(t), where H is

an approximant to the average H(t) in the interval between t and t + δt. In the

coupled-wire case, H(t) depends on X(t) through the self-consistency condition

in Eq. (2.5). This self-consistent approach conserves total mean particle number

of “a” and “c” atoms, and is a more sophisticated generalization of the random
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phase approximation. In the proximity-induced superfluid case, contact with a

bath implies H(t) is a constant and the total mean number of “a” and “c” atoms

are not conserved.

From X(t), we calculate 〈γ̂†edgeγ̂edge〉, the probability of the qubit being in the

state |g+〉. We also calculate coherences between |g+〉 and |g−〉 through 〈γ̂edge〉.

We quantify the success of our protocols through the fidelity of the final state

produced by the gates, defined as the norm of the overlap of the final state |ψf〉

with the intended target state |φ〉, f(|φ〉, |ψf〉) = ||〈φ|ψf〉||. We express the fidelity

in terms of expectation values of edge-state creation and annihilation operators.

For example if the intended target state is |g+〉, the fidelity is
√
〈ψf |γ̂†edgeγ̂edge|ψf〉.

With these tools we explore algorithms to implement various gates on qubits.

2.8 Quantum Gates

2.8.1 Intermediate Regime: Projective Initialization

We begin by discussing the physics of the intermediate regime Jc > Ω > Jc/N as

this is the most familiar. Here the photon absorption rate is given by Fermi’s golden

rule, and Figs. 2.2 and 2.3 can be directly interpreted as the rates of producing

“c” atoms. To perform a projective initialization, we use the fact that there are

frequencies ω where Γ(|g+〉, ω) 6= 0, but Γ(|g−〉, ω) = 0. Logically one must be able

to deterministically set the qubit into the state |g−〉 by shining photons at those

frequencies. A similar method can be used to set the qubit into |g+〉. By working

in the regime Jc/N < Ω < Jc, we ensure that any atoms which exit in the “c”

state carry away the information about the initial state of the qubit.
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Figure 2.4: Dynamics of 〈γ̂†edgeγ̂edge〉 during the initialization gate in a geometry
where the system consists of a single wire immersed in a superfluid cloud. The
wire is in the form of a ring, as explained in Sec. 2.5.1. Electromagnetic waves are
shined upon the system, with frequencies (a) ω = −µc−2Jc and (b) ω = −µc+2Jc.
The solid curve corresponds to the system’s initial state being |ψ〉 = |g+〉, and the
dashed curve to |ψ〉 = |g−〉. The fidelities of the initialization gate in the two cases
are nearly 100%.

Figure 2.4 shows the dynamics of 〈γ̂†edgeγ̂edge〉 for the proximity-induced case (i.e,

when ∆j are constant) for two different microwave frequencies and two different

initial states |g+〉 and |g−〉. In Fig. 2.4(a) we choose a frequency where Γ(|g−〉, ω) =

0, producing |g−〉 as the final state for both initial states, and in Fig. 2.4(b) we

choose a frequency where Γ(|g+〉, ω) = 0, producing |g+〉 as the final state for both

initial states. The fidelity of the final state produced in all four cases is nearly

100%.

We find that our algorithm to initialize the qubit does not work in the coupled-

wire geometry, where ∆j are determined self-consistently. Figure 2.5 shows the

dynamics of 〈γ̂†edgeγ̂edge〉 for this case. This failure is due to an induced chemical

potential in the wires during photon absorption. We examine this failure in more

detail below.
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Figure 2.5: Dynamics of 〈γ̂edgeγ̂
†
edge〉 during the initialization gate in a geometry

of coupled wires or rings. (a) The atoms are trapped in an array of linear wires.
Parameters: ∆j = J = 40Ω, Jc = 5Ω, N = 25, ω0 = −µc. (b) The atoms are
trapped in an array of rings. Parameters: ∆j = J = 20Ω, Jc = 7.5Ω, N = 50, ω0 =
−µc − 2Jc. Insets show the geometry of trapping. The solid line represents the
case where the system is initially in the state |g+〉, and the dashed line represents
where it is initially in |g−〉. A frequency ω0 where Γ(|g−〉, ω0) = 0 is shined upon
the system, with the intention of setting the qubit to |g−〉. The square of the
fidelity of the final state is roughly 50% in (a) and 90% in (b). In both cases, there
is some absorption when the initial state is |g−〉 due to finite bandwidth of the “c”
atoms. In both cases, this shifts ω to a new frequency where |g−〉 is not dark. In
case (a) the absorption at this new frequency is significant, while in case (b) the
absorption is still small.

Failure of Projective Initialization in Arrays of Coupled Wires

As previously introduced, we consider an array of wires or rings, each initially

in the state |g+〉. We illuminate the atoms with photons of frequency ω0 where

Γ(|g+〉, ω0) 6= 0, but Γ(|g−〉, ω0) = 0, with the intention of driving all the clouds

into |g−〉. If this process was successful, it would remove one “a” atom from each

wire and hence shift the chemical potential. This resulting shift δµ would be of

order J/N , where J is the hopping amplitude of the “a” atoms and N is the

number of lattice sites. As detailed in Eq. (2.8), the chemical potential enters

into the relationship between the physical electromagnetic frequency ωphysical and

the frequency ω that appears in Fermi’s golden rule. The condition Γ(|g−〉, ω) = 0
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will be violated at the new frequency ω = ω0 − δµ/~, and the gate instead drives

the system into a steady-state mixture of |g+〉 and |g−〉. As a technical point, we

do not have a time-dependent µ in our equations; rather this effect is manifest by

a time-dependent phase for ∆j. Figure 2.5(a) shows a self-consistent mean-field

theory calculation of the evolution of 〈γ̂†edgeγ̂edge〉 when the atoms are trapped in

an array of finite wires. It illustrates that the square of the fidelity of the final

state is only about 50%.

One might argue that the scaling of δµ ' O(J/N) with N implies that the gate

will work in the thermodynamic limit. Such an argument is fallacious when the

atoms are trapped in a linear geometry. In this case the spacing δω of the peaks in

the absorption spectra scales as O(Jc/N~). In order to have localized edge modes

where the edge spectrum is separated from the bulk, one needs Jc << ∆ ' J .

Therefore in this geometry, δµ is always large compared to ~δω, and the absorption

rate in the state |g−〉 at the new frequency ω = ω0−δµ/~ is significant. The fidelity

is therefore poor.
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Figure 2.6: Fidelity of the initialization gate for different lengths of superfluid
rings. The “a” and “c” atoms are confined in a ring geometry. We used parameters:
∆j = J = 20Ω, Jc = 7.5Ω, and ω0 = µc ± 2Jc for desired final states |φ〉 = |g±〉.
|ψf〉 denotes the actual final state produced. The initialization gate has higher
fidelity for larger lengths N .

33



Conversely, the initialization gate works in the thermodynamic limit for an

array of rings. As shown in Fig. 2.2 for the ring geometry, the change in the

spectral weights over a scale of O(Jc/N) is small. Therefore, in this case one can

spectroscopically set the qubit with higher fidelity. This success is illustrated in

Fig. 2.5(b) for parameters where the square of the fidelity of the final state is

roughly 90%. Figure 2.6 illustrates that the fidelity grows as N increases, albeit

slowly.

We avoid these difficulties in the rest of this chapter by restricting ourselves to

the case of a single wire in proximity to a superfluid cloud. Similar physics can be

seen in arrays of coupled wires, but the changing chemical potential will result in

smaller fidelities.

2.8.2 Fast and Slow Regimes: Coherent Gate Operations

In this section we explore algorithms to perform a set of gates required for quantum

computing: X, Y,H (Hadamard) and CY (controlled-Y ). It will be convenient to

also define a Z gate: Z = −iXY . The X, Y, Z, and H gates act on single qubits

and are described below. The CY gate is a two-qubit gate which will be analyzed

in Sec. 2.9.

The X, Y and Z gates perform a rotation of the Bloch sphere by π radians

around the x, y and z axes. That is,

X|g+〉 = |g−〉, X|g−〉 = |g+〉,

Y |g+〉 = i|g−〉, Y |g−〉 = −i|g+〉,

Z|g+〉 = |g+〉, Z|g−〉 = −|g−〉.

(2.38)

For our system, these gates can be expressed as X = γ̂edge + γ̂†edge, Y = i(γ̂edge −
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γ̂†edge), and Z = γ̂†edgeγ̂edge− γ̂edgeγ̂
†
edge. The X and Y gates are related to each other

by a gauge transformation of the fermionic creation and annihilation operators. To

disambiguate the situation we take ∆j > 0. It can be observed from Eq. (2.20)

that, in this case, the coherence factors f0(j) are peaked at j = 1.

The H gate is

H|g+〉 = |g+〉+|g−〉√
2

,

H|g−〉 = |g+〉−|g−〉√
2

.
(2.39)

It can be expressed in terms of edge mode operators as H = (γ̂edge + γ̂†edge +

γ̂†edgeγ̂edge − γ̂edgeγ̂
†
edge)/

√
2. The H gate creates superpositions between states of

opposite number parity. Since the Hamiltonian modeling our system [Eq. (2.9)]

is parity-conserving, it is not possible to implement the H gate using microwaves

on these qubits: Any attempt to produce it using microwaves will result in a state

with entanglement between the “a” and “c” atoms. We explain how to avoid this

in Sec. 2.9, where we propose an architecture in which two logical qubits are

encoded in three physical qubits. The logical gates will be made from X, Y , and

Z rotations on physical qubits, which we explore below.

X Gate

To implement the X gate on a physical qubit, we illuminate only the left half of

the qubit. Experimentally, this can be done by either placing a mask on the right

half or by focusing light of short wavelength on the left half of the system, i.e, using

Raman techniques with light of wavelength shorter than half the size of the system

' O(mm). In the rotating-wave approximation, the term in the Hamiltonian that

involves electromagnetic waves [Eq. (2.6)] is now

ĤX = Ω
∑

j≤N/2
ĉ†j âj + h.c.. (2.40)
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We can decompose ĤX as ĤX = Ĥres
X + Ĥoff−res

X , where Ĥres
X includes terms in

which edge modes are resonant with the “c” states, and Ĥoff−res
X includes all the

other terms which are off-resonant. This can be observed by rewriting âj in terms

of quasiparticle operators. Inverting Eq. (2.12) and using the definition of f0(j),

we obtain

âj = f0(j)(γ̂edge + γ̂†edge) + f0(N + 1− j)(γ̂edge − γ̂†edge)

+
∑

ν 6=0(uν(j)γ̂ν + vν(j)γ̂
†
ν).

(2.41)

The terms involving bulk quasiparticles (ν 6= 0) are off-resonant and are included in

Ĥoff−res
X . Further in Eq. (2.40), ĉ†j can be decomposed into “c” eigenmode creation

operators. All the eigenmodes will be excited in the fast regime ∆j >> Ω > Jc,

while only one eigenmode will be resonantly coupled in the slow regime Ωc < Jc/N .

Terms in Eq. (2.40) involving modes that are not excited are included in Ĥoff−res
X .

Hereafter, we neglect the off-resonant terms, Ĥoff−res
X . We explicitly consider the

form of Ĥres
X in both the slow (Ω < Jc/N) and the fast (Ω > Jc) limits.

As explained above, in the fast regime ∆j >> Ω > Jc,

Ĥres
X =

Ω

2

∑

j≤N/2
(f0(j)ĉ†jX − if0(N + 1− j)ĉ†jY + h.c), (2.42)

where X = γ̂edge + γ̂†edge, Y = i(γ̂edge − γ̂†edge), and f0(j) are the coherence factors

discussed in Sec. 2.4. Since f0(j) falls exponentially to zero away from j = 1, the

coefficients of Y are small and can be ignored. We define ĉ
†

=
∑
j≤N/2 f0(j)ĉ†j∑
j≤N/2 |f0(j)|2 and

Ω̃ = Ω
∑

j≤N/2 |f0(j)|2 to produce

Ĥres
X =

Ω̃

2
(ĉ
† − ĉ)X. (2.43)

For short times t << ~/Jc, one can ignore the dynamics of “c” atoms. The state

of the qubit at time t is

|ψ(t)〉 =

(
cos

Ω̃t

2~
+ sin

Ω̃t

2~
ĉ− ĉ†

i
X

)
|ψ(0)〉+O(Jct/~). (2.44)
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The X gate is implemented by shining a π pulse lasting T = π~
Ω̃

. The pulse also

excites or deexcites a “c” atom, but, as explained in Sec. 2.6, these “c” atoms do

not play any role in future dynamics. The dynamics of 〈γ̂†edgeγ̂edge〉 and 〈γ̂edge〉 for a

π pulse are illustrated in Figs. 2.7(a) and 2.7(b) for an initial state |g+〉+|g−〉√
2

, which

is an eigenstate of X. The average occupation of the edge mode, 〈γ̂†edgeγ̂edge〉, does

not change, indicating that the probability of the qubit being in |g+〉 remains 50%

throughout the pulse. The coherence 〈γ̂edge〉 also remains constant, indicating that

the phase between |g+〉 and |g−〉 remains zero.

In the slow regime Ω < Jc/N , the Majorana modes only resonantly couple to

one eigenmode of the “c” state. This eigenmode is a momentum state in transla-

tionally invariant geometries. In this regime,

Ĥres
X =

Ω

2

(
(αkĉ

†
k − α∗kĉk)X + i(βkĉ

†
k + β∗k ĉk)Y

)
. (2.45)

where k labels the spectrally selected mode, αk = 1
2

∑
j≤N/2 f0(j)ψk(j), βk =

1
2

∑
j≤N/2 f0(N+1−j)ψk(j), and ψk is the wave function of the “c” mode discussed

in Sec. 2.5. As before we neglect the coefficients of Y and arrive at a similar

expression

|ψ(t)〉 =

(
cos
|αk|Ωt

2~
+ sin

|αk|Ωt
2~

α∗kĉk − αkĉ†k
i

X

)
|ψ(0)〉. (2.46)

The X gate is implemented by shining a π pulse lasting T = π~
|αk|Ω .

Y Gate

To implement the Y gate we illuminate only the right half of the system. The term

in the Hamiltonian that involves electromagnetic waves [Eq. (2.6)] is replaced with

ĤY = Ω
∑

j>N/2

ĉ†j âje
−iωt + h.c. (2.47)
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Figure 2.7: Dynamics of 〈γ̂†edgeγ̂edge〉 and 〈γ̂edge〉 during the X and Y gates. The
parameters used are ∆ = J = 80Ω, µ = 0, Jc = 0, ω = −µc, and the system is
initialized to 1√

2
(|g+〉 + |g−〉). Panels (a) and (b) illustrate the dynamics in the

case of an X gate operation and show that the final state is 1√
2
(|g+〉+ |g−〉). Panels

(c) and (d) illustrate the dynamics in the case of a Y gate operation and show that
the final state is i√

2
(|g+〉 − |g−〉).

Neglecting off-resonant terms and exponentially small terms, Eq. (2.47) reduces

to

Ĥ fast
Y =

iΩ̃

2
(ĉ
†

+ ĉ)Y (2.48)

in the fast regime, and to

Ĥslow
Y =

iΩ

2
(β∗k ĉk + βkĉ

†
k)Y (2.49)

in the slow regime. Here Ω̃, ĉ and βk have the same meaning as in Sec. 2.8.2. The

Y gate is implemented by shining a π pulse lasting T = π~
Ω̃

in the fast regime and
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T = π~
|βk|Ω in the slow regime. The dynamics of 〈γ̂†edgeγ̂edge〉 and 〈γ̂edge〉 for such a π

pulse in the fast regime are illustrated in Figs. 2.7(c) and 2.7(d). Here we see a π

phase introduced in the coherence between |g+〉 and |g−〉.

2.8.3 Z Gate

The Z = −iXY gate can be implemented by illuminating a π pulse on the right

half, followed by a π pulse on the left half.

2.9 Two Logical Qubits Composed Of Three Physical

Qubits

As explained in Sec. 2.8, it is impossible to implement the H gate on individual

physical qubits as our approach cannot create superpositions of states with odd

and even numbers of particles. This motivates us to consider a more sophisticated

architecture where we construct n logical qubits from n + 1 physical qubits. Al-

ternatively, one could encode each logical qubit in a pair of physical qubits (for

example, [170]), but our encoding is more compact. In this section, we focus on

the case n = 2. We define our construction, and propose algorithms to produce all

the quantum gates required for universal quantum computation. In Sec. 2.9.4 we

discuss the generalization to arbitrary n.
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2.9.1 Construction of Logical Qubits

We consider a 1D cloud of “a” atoms broken by a set of potential barriers into

three segments, each of length N . We envision using spin-dependent potentials

so that the barriers are invisible to atoms in the “c” state. Each segment of “a”

atoms has a pair of Majorana edge modes. We label the three clouds as p1, p2, and

p3 and denote the positions of their edges by r1 and r′1, r2 and r′2, and r3 and r′3.

We use the construction in Sec. 2.4 to uniquely define fermionic modes γ̂†1, γ̂
†
2, and

γ̂†3 from the edge modes localized at r1 and r′1, r2 and r′2, and r3 and r′3.

The ground-state manifold of this system is eight-fold degenerate,

|g±±±〉. We define |g−−−〉 as the vacuum of quasiparticles: γ̂1|g−−−〉 =

γ̂2|g−−−〉 = γ̂3|g−−−〉 = 0 and define the other ground states as |gσσ′σ′′〉 =
(
γ̂†1

) 1+σ
2
(
γ̂†2

) 1+σ′
2
(
γ̂†3

) 1+σ′′
2 |g−−−〉, where σ, σ′, σ′′ = ±. For example, |g+++〉 =

γ̂†1γ̂
†
2γ̂
†
3|g−−−〉. We will use the notations |gσσ′σ′′〉 and |gσ〉 ⊗ |gσ′〉 ⊗ |gσ′′〉 inter-

changeably, where ⊗ is the Cartesian product.

Of the eightfold degenerate states, four have the same parity. We construct

two logical qubits from these four states and assign them the labels:

| − −〉 ≡ |g−−+〉 = γ̂†3|g−−−〉

| −+〉 ≡ |g−+−〉 = γ̂†2|g−−−〉

|+−〉 ≡ |g+−−〉 = γ̂†1|g−−−〉

|+ +〉 ≡ |g+++〉 = γ̂†1γ̂
†
2γ̂
†
3|g−−−〉.

(2.50)

We denote the logical qubits by l1 and l2. We call p1 and p2 the representational

bits as their states are identical to those of the logical qubits l1 and l2. The ancillary

bit p3 serves the purpose of maintaining the total parity.

To spectroscopically measure and perform gate operations on the logical qubit,
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we electromagnetically excite the atoms from the “a” state to the “c” state. We

find that we can measure the state of the qubits and implement the initialization,

X, Y , and Z gates on the logical qubits by addressing each physical qubit separately

as outlined in Secs. 2.5 and 2.8. To implement the Hadamard and two-qubit gates,

we address two physical qubits simultaneously. In the following, we let X1 denote

the X gate on the physical qubit p1 and X logical
1 denote the X gate on the logical

qubit l1. We use similar notations for the other gates. Below we describe the

logical gates.

-2 -1 0 1 2
omega

0.1

0.2
Gamma

Figure 2.8: Absorption spectrum of physical qubit p1 trapped in a linear geometry,
where barriers create three physical qubits from one wire. Parameters used: ∆j =
J, µ = 0, N = 7. The solid curve corresponds to the spectrum of |g+〉, and the
dashed curve to the spectrum of |g−〉.

2.9.2 Measurement and Initialization

As mentioned earlier, the states of the logical qubits l1 and l2 coincide with the

states of physical qubits p1 and p2. The spectra of each physical qubit are given

41



by expressions derived in Sec. 2.5. These spectra are plotted in Fig. 2.8. Since

the cloud of “c” atoms is three times as long as the segment corresponding to a

physical qubit, the spectra contain sets of three peaks interdigitated among each

other.

Projective initialization of the two logical qubits can be achieved by three single-

photon transitions, one for each physical qubit. For example, to set the logical

qubits in the state | + +〉, we initialize each physical qubit in the state |g+〉. To

achieve this we illuminate each wire separately at the frequencies which drive the

qubits into the desired state.

2.9.3 Coherent Single Qubit Operations

We implement coherent single-qubit gates by a series of microwave pulses on in-

dividual physical qubits. One complication is that each microwave pulse not only

flips a qubit, but can also add an undesired phase determined by the other qubits.

This phase is a result of fermionic commutation relations. For illustration, we con-

sider the action of the operator γ̂2 + γ̂†2 (which is the relevant operator when the

left half of p2 is illuminated, and would naively be expected to give the X2 gate):

(γ̂2 + γ̂†2)|g−+σ〉 = |g−−σ〉 = −Z1X2|g−+σ〉,

(γ̂2 + γ̂†2)|g++σ〉 = −|g+−σ〉 = −Z1X2|g++σ〉.
(2.51)

This operation yields −Z1X2 instead of the intended gate X2. In the generic case,

the result of a rotation
(
ziγ̂i + z∗i γ̂

†
i

)
on a state ⊗3

j=1|gσj〉 is

(
ziγ̂i + z∗i γ̂

†
i

) (
⊗3
j=1|gσj〉

)
=
(
⊗j<i − Zj|gσj〉

)
⊗
((
ziγ̂i + z∗i γ̂

†
i

)
|gσi〉

)
⊗
(
⊗j>i|gσj〉

)

(2.52)
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The sequence of −Z gates above can be thought of as a Jordan-Wigner transfor-

mation. As explicitly shown below, a simple sequence of pulses can remove these

unwanted phases for the X, Y and Z gates.

Incorporating pulses to remove unwanted phases, we find

X logical
1 = X1X3

= (γ̂1 − γ̂†1)(γ̂2 + γ̂†2)(γ̂2 − γ̂†2)(γ̂3 + γ̂†3),

Y logical
1 = Y1X3

= (γ̂1 + γ̂†1)(γ̂2 + γ̂†2)(γ̂2 − γ̂†2)(γ̂3 + γ̂†3),

X logical
2 = X2X3

= (γ̂2 − γ̂†2)(γ̂3 + γ̂†3),

Y logical
2 = Y2X3

= (γ̂2 + γ̂†2)(γ̂3 + γ̂†3).

(2.53)

As in Sec. 2.8, each operator in parentheses corresponds to illuminating one part

of one segment. As before, Z logical
i = −iX logical

i Y logical
i .

The logical Hadamard gate, H logical
i , requires two-qubit operations (one repre-

sentational bit and one ancillary bit) and is discussed in Sec. 2.9.4 along with the

CY gate.

2.9.4 Two-Qubit Operations

We achieve two-qubit operations on physical qubits pi and pj by simultaneously

illuminating pi and pj with a microwave coupling strength Ω < Jc/N . To achieve

different rotations in the ground-state manifold, we focus microwave pulses of

different frequencies, durations and spatial distributions. For concreteness, we

consider the rotation given by γ̂1 + γ̂†1 + γ̂2 + γ̂†2. To achieve this, we illuminate the
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left half of p1 and p2 simultaneously. Labeling the “c” eigenstate being excited by

k, the Hamiltonian governing the excitation to that mode has the form

Ĥres
2qubit =

∑

0≤j<N/2
f1(r1 + j)ψk(r1 + j)ĉ†k

γ̂1 + γ̂†1
2

+ f2(r2 + j)ψk(r2 + j)ĉ†k
γ̂2 + γ̂†2

2

+ f1(r′1 − j)ψk(r′1 − j)× ĉ†k
γ̂1 − γ̂†1

2
+ f2(r′2 − j)ψk(r′2 − j)ĉ†k

γ̂2 − γ̂†2
2

+ h.c

(2.54)

Since f1(r1 +j) and f2(r2 +j) exponentially decay away from j = 0, we neglect the

coefficients of γ̂1 − γ̂1
† and γ̂2 − γ̂2

†. We find that the microwave frequency should

be chosen such that
∑

0≤j<N/2 f1(r1 + j)ψk(r1 + j) =
∑

0≤j<N/2 f2(r2 + j)ψk(r2 + j)

whose value we denote by αk. In that case, Eq. (2.54) reduces to

Ĥres
2qubit = Ω

αkĉ
†
k − α∗kĉk

2

(
γ̂1 + γ̂†1 + γ̂2 + γ̂†2

)
. (2.55)

A π pulse lasting T = π~
|αk|Ω performs the intended operation γ̂1+γ̂†1 +γ̂2+γ̂†2. Other

rotations in the ground-state manifold can be produced by choosing the frequency,

duration, and spatial distribution of the microwave pulse appropriately.

Below we provide explicit algorithms to perform the H logical
i and CY gates. We

first introduce two operations that will be useful building blocks and construct the

H logical
i and CY gates out of these building blocks. In Sec. 2.9.4, we consider the

action of generic rotations on the qubits and the problems encountered in generic

rotations.

Gates Involving Two-Qubit Operations

The first operation we consider, denoted byHij, consists of two steps which perform

the rotation (γ̂†i + γ̂i + γ̂†j + γ̂j)(γ̂i − γ̂†i ). The second operation we introduce also

consists of two steps: Sij = (γ̂i + γ̂†i + γ̂j + γ̂†j )(γ̂i − γ̂†i + γ̂j − γ̂†j ). We construct

H logical
i and CY gates out of Hij, Sij and single-qubit gates.
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In terms of these building blocks,

H logical
2 = H23,

CY
12 = Z1Z2S23,

CY
21 = Z1S12S23S12, and

H logical
1 = CY

21S13.

(2.56)

Entanglement in Two-Qubit Operations

In this section we explore generic two-qubit operations that can be performed by

microwave pulses on pairs of qubits. The Hij and Sij operations introduced earlier

are special cases.

The term in the Hamiltonian [Eq. (2.6)] which resonantly couples the Majorana

mode to a “c” eigenstate labeled by k has the form

Ĥres = Ω(ĉ†kĥij + ĥ†ij ĉk), (2.57)

where ĥij consists of edge mode operators. The most generic hij is Hermitian; i.e,

it has the form:

ĥij = ziγ̂i + z∗i γ̂
†
i + zj γ̂j + z∗j γ̂

†
j . (2.58)

This can be derived as follows. In order for the “c” atoms to disentangle from

the rotation performed on the qubits, ĥij has to satisfy ĥ†ij = eiφĥij where φ is an

arbitrary phase. By absorbing this phase into the “c” operators, we arrive at the

form in Eq. (2.58).

We illustrate that ĥij leads to different physical consequences when acting upon

neighboring qubits or distantly spaced qubits. If the segments i and j = i+ 1 are

neighbors, the result of the generic pulse in Eq. (2.58) only involves the physical
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qubits on those sites, and

ĥi,i+1|gσiσi+1
〉 =

(
ziγ̂i + z∗i γ̂

†
i |gσi〉

)
⊗|gσi+1

〉+(−1)
1+σi

2 |gσi〉⊗
(
zi+1γ̂i+1 + z∗i+1γ̂

†
i+1|gσi+1

〉
)
,

(2.59)

where σi, σi+1 = ±. If instead the segments are further spaced, the action of the

pulse involves all intervening qubits. For example, if they are separated by one

segment (which is the largest separation allowed for three physical qubits),

ĥi,i+2|gσiσi+1σi+2
〉 =

(
ziγ̂i + z∗i γ̂

†
i |gσi〉

)
⊗ |gσi+1,σi+2

〉+ (−1)
2+σi+σi+1

2 |gσi,σi+1
〉

⊗
(
zi+2γ̂i+2 + z∗i+2γ̂

†
i+2|gσi+2

〉
)
.

(2.60)

The generalization to longer chains is straightforward.

The extra phases produced when hij acts on nonadjacent qubits are the reason

why the implementation of H logical
1 and C21

Y in Sec. 2.9.4 were so much more

complicated than H logical
2 and C12

Y . Due to these phases, extending our proposal

to more than two logical qubits is non-trivial. However we see no impediment to

constructing generic gates for chains of N qubits for arbitrary N .

2.10 Summary

In summary, we have presented an experimentally feasible method to perform

quantum computing with Majorana fermions in cold gases using microwaves. We

considered two geometries which give rise to Majorana fermion excitations: a 2D

array of coupled 1D wires, and a single 1D wire embedded in a superfluid cloud.

We proposed various methods to generate nearest-neighbor interactions between

atoms in the coupled wires, which is crucial to creating Majorana fermions. We

modeled these systems with a mean-field theory and studied their single-particle

excitation spectra. We observed that the systems supported Majorana modes for
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a certain range of parameters, and that in this “topologically non-trivial phase”,

the ground state is doubly degenerate. These two degenerate states can be used

as a qubit. We calculated the absorption spectra, and showed that the lineshape

gives evidence of Majorana fermions and can be used to measure the state of the

qubit. We further showed that absorption of a photon flips between the degenerate

states. We proposed that this feature could be used to perform quantum gates on

the qubit. We found the geometries for which this protocol works. We presented

algorithms to perform certain quantum gates on individual physical qubits. We

constructed logical qubits out of physical qubits and gave generic arguments to

perform rotations of the qubits. In addition to these arguments, we gave explicit

pulse sequences for constructing a universal set of quantum gates for two logical

qubits encoded in three physical qubits, hence allowing our system to be used for

universal quantum computation.
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CHAPTER 3

LATTICE BOSONS WITH INFINITE RANGE INTERACTIONS

MANY-BODY PHYSICS USING COLD ATOMS

Bhuvanesh Sundar, Ph.D.

Cornell University 2016

Motivated by experiments performed by Landig et al. [Nature (London) 532,

476 (2016)], we consider a two-dimensional Bose gas in an optical lattice, trapped

inside a single mode superradiant Fabry-Perot cavity. The cavity mediates infinite-

range checkerboard interactions between the atoms, which produces competition

between Mott insulator, charge-density wave, superfluid, and supersolid phases.

We calculate the phase diagram of this Bose gas in a homogeneous system and in

the presence of a harmonic trap. The work in this chapter was done in collaboration

with Prof. Erich Mueller. This chapter is adapted from a peer-reviewed article,

Physical Review A 94, 033631 (2016), which was co-authored with Prof. Erich

Mueller.



3.1 Introduction

Introducing long-range interactions between bosonic atoms in an optical lattice

provides the opportunity to explore different phases, driven by the competition

between short-range interactions, long-range interactions, and quantum tunnel-

ing. Interactions mediated via an optical cavity provide an avenue to explore

this physics [86, 80]. In this study, we calculate the phase diagram of bosonic

atoms experiencing such cavity-mediated long-range interactions. We find a rich

phase diagram with superfluid (SF), supersolid (SS), Mott insulator (MI), and

charge-density wave (CDW) phases. We find a breakdown of the local-density

approximation (LDA), and good agreement with experiments [86].

By trapping 87Rb atoms in a transversely pumped single mode optical cavity

and tuning the cavity into the superradiant phase, Landig et al. have produced

infinite-range interactions between bosonic atoms [86]. Interference between the

pump beam and the light scattered into the cavity results in a checkerboard in-

tensity pattern, whose strength is proportional to the number of atoms on the

high intensity sites. Integrating out the photons yields a long-range checkerboard

interaction. By changing the lattice depth and the cavity detuning, the experi-

mentalists can independently tune the strengths of the short-range and long-range

atomic interactions relative to the tunneling strength. Adding these long-range

interactions to a Bose-Hubbard model, we use a variational ansatz to produce a

phase diagram. We consider both a homogeneous and a harmonically trapped sys-

tem. In addition to SF order, characterized by off-diagonal long-range order in the

single-particle density matrix, the system can also display CDW order, where the

occupations on the even and odd sites differ. Coexistence of both orders results

in a SS, and the absence of both orders a MI. All four of these phases are found
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in our calculations, and were seen in experiments as well [86]. We predict that

a reanalysis of existing experimental data will reveal previously undetected phase

transitions. Some of our results for homogeneous systems have been seen in other

theoretical studies [36, 22, 94, 124].

This chapter is organized as follows. In Sec. 3.2, we introduce our model for

a homogeneous Bose gas, and present the phase diagram. In Sec. 6.4, we analyze

the harmonically trapped case. We conclude in Sec. 6.6.

3.2 Homogeneous gas

In this section, we explore the phase diagram of a homogeneous Bose gas in an

optical lattice, trapped inside a single mode optical cavity. We calculate the ground

state of the bosons by minimizing the energy of a variational many-body wave

function. We obtain the phase boundaries through a combination of numerical and

analytical means. This section is organized as follows. In Sec. 3.2.1, we introduce

our model for a homogeneous Bose gas in an optical lattice, including cavity-

mediated infinite-range interactions. In Sec. 3.2.2, we introduce our variational

ansatz and calculate the energy of the system. In Sec. 3.2.3, we present the phase

diagram of our model.

3.2.1 Model

We consider an ultracold gas of bosons tightly confined to the x-y plane, where they

experience a 2D optical lattice. The atoms are coupled to the fundamental mode of

a high finesse Fabry-Perot cavity oriented along the x direction, and illuminated by
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Figure 3.1: Schematic of the experimental setup. A trapped cloud of bosonic 87Rb
atoms sits in an off-resonant optical cavity. The atoms are pumped from the side,
and scatter light into the cavity. A second laser enters the cavity along its axis,
producing an optical lattice.

a pump beam along the y direction (see Fig. 3.1). The pump light scattered by the

atoms into the cavity mediates an effective infinite-range atom-atom interaction.

The effective atom-atom interactions are derived in [99], producing a Hamiltonian

Ĥ = Ĥlat + Ĥcav. (3.1)

The term Ĥlat models the trap, tunneling of atoms, and on-site interactions in the

two-dimensional optical lattice:

Ĥlat =
∑

〈ij〉
−Jĉ†i ĉj + H.c.+

∑

i

U

2
ĉ†i ĉ
†
i ĉiĉi − µiĉ

†
i ĉi. (3.2)

The operator ĉ†i (ĉi) creates (annihilates) a boson at lattice site i. The hopping

strength J can be tuned by controlling the intensity of the laser creating the

optical lattice. The on-site interaction strength U can be controlled via the laser

intensity and the transverse confinement, or by tuning the magnetic field near a

Feshbach resonance. The last term in Eq. (3.2) models the trap, where µi is an
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effective spatially dependent chemical potential,

µi = µ− 1

2
mω2

(
x2
i + y2

i

)
, (3.3)

where xi and yi denote the co-ordinates of lattice site i in integer multiples of the

lattice constant. For a homogeneous gas, we set ω = 0.

The term Ĥcav models the infinite-range interactions mediated by the light in

the Fabry-Perot cavity,

Ĥcav = −U
′

K

(∑

i

(−1)xi+yi ĉ†i ĉi

)2

, (3.4)

where K is the total number of lattice sites. The effective long-range interaction

strength U ′ is related to experimental parameters as

U ′ ' −K ~η2

∆c

(3.5)

where η is the two-photon Rabi frequency, and ∆c is the detuning of the optical

lattice laser from the fundamental mode of the Fabry-Perot cavity [99]. In this

study, we only work in a regime where U ′ > 0. When at fixed density, the long-

range interaction energy scales as K2, while all other energies scale as K. Thus,

to achieve a reasonable thermodynamic limit, we fix U ′ while K →∞.

3.2.2 Gutzwiller ansatz

The model in Eq. (3.1) breaks the symmetry between two kinds of sites: those for

which xi + yi is even (which we call even sites), and for which xi + yi is odd (which

we call odd sites). We make a variational ansatz which includes this asymmetry:

|ψ〉 =

(∑

i∈even

∞∑

n=0

an√
n!

(
ĉ†i

)n
)(∑

j∈odd

∞∑

n=0

bn√
n!

(
ĉ†j

)n
)
|0〉 , (3.6)
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where |0〉 is the vacuum of atoms. Our ansatz in Eq. (3.6) is an extension of

the Gutzwiller ansatz for the Bose-Hubbard model [47, 69]. Normalization dic-

tates that
∑∞

n=0 |an|2 =
∑∞

n=0 |bn|2 = 1. The average energy of our variational

wavefunction is

Evar =K

(
−zJ

(∑

n

√
nanan+1

)(∑

n

√
nbnbn+1

)

+
∑

n

(
U

4
n(n− 1)− µ

2
n

)
(|an|2 + |bn|2) −U

′

4

(∑

n

n(|an|2 − |bn|2)

)2

 ,

(3.7)

where z is the number of nearest neighbors to a lattice site. In our case of a

two-dimensional square lattice, z = 4.

3.2.3 Phase diagram

J = 0

In the case of a deep optical lattice (J = 0), the variational wavefunction which

minimizes the energy describes an insulator with parameters

an = δn,ne ,

bn = δn,no .
(3.8)

Here, δm,n is the Kronecker δ, and ne and no are integers obtained by minimizing

the energy in Eq. (3.7). If ne = no, the ground state is a Mott insulator (MI). If

ne 6= no, the ground state is a charge-density wave insulator (CDW). The phase

diagram for J = 0 is plotted in Fig. 3.2. All the phase transitions in this phase

diagram are of first order.
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Figure 3.2: Phase diagram of a homogeneous Bose gas in the absence of tunneling
between lattice sites. The label MIn denotes a Mott insulating phase with n atoms
on each lattice site, and CDWnm denotes a charge-density wave phase with n and
m atoms on even and odd sites, or vice versa. The parameters U and U ′ are
the strengths of the short- and long-range interactions, while µ is the chemical
potential.

We define the imbalance in the ground state to be

I =

∣∣∣∣∣∣

∑
i(−1)xi+yi

〈
ĉ†i ĉi
〉

∑
i

〈
ĉ†i ĉi
〉

∣∣∣∣∣∣
. (3.9)

For J = 0, the ground state is balanced (I = 0) or partially imbalanced (I < 1)

for U ′

U
< 1

2
, and fully imbalanced (I = 1) for U ′

U
> 1

2
. The wavefunction collapses

to a state with infinite particles on every site for U ′ > U .

J 6= 0, 0 ≤ U ′ ≤ U/2

For finite tunneling strength J , we minimize the energy in Eq. (3.7) numerically.

The ground state is a superfluid (SF) if 〈ci〉 is uniform and non zero. The ground
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Figure 3.3: Phase diagram of a homogeneous Bose gas for four different values
of the long-range interaction strength U ′. SS denotes supersolid, and SF denotes
superfluid. Dashed lines indicate second-order phase transitions, and solid lines
indicate first order. The parameter J is the tunneling strength between lattice
sites.

state is a supersolid (SS) if 〈ci〉 6= 〈cj〉 6= 0, where i and j are even and odd sites.

Phase diagrams for four different values of U ′ are plotted in Fig. 3.3.

For 0 < U ′

U
< 1

2
, partially imbalanced CDW and SS phases (with I < 1) appear

in regions where nU − U ′

2
< µ < nU + U ′

2
, where n is any integer. In these phases,

the density on even and odd sites is unequal, and the symmetry between even and

odd sites is spontaneously broken. In most regions of the CDW lobes, the CDW

phase undergoes a second-order phase transition to the SS phase as J is increased
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at constant µ and U ′. We define Ω to be the determinant of the Hessian of the

free energy in Eq. (3.7), computed at the optimal variational parameters in Eq.

(3.8). At the second-order phase transition from SS to CDW, Ω = 0. This yields

a simple analytic expression for the phase boundary,

J =
1

z

√
(U ′2 − (µ− Un)2) ((U − U ′)2 − (µ− Un)2)

(µ+ U)2 − U ′2 , (3.10)

where n is the occupation number on lattice sites with fewer atoms, in the CDW

phase at J = 0. Our numerics confirm this result. Upon increasing J further, the

SS phase undergoes a first-order phase transition to the SF phase. Near the edges

of the CDW lobes (µ ∼ nU ± U ′

2
), the CDW phase directly undergoes a first-order

phase transition to SF. There are no analytic expressions for these first-order phase

boundaries.

J 6= 0, U/2 < U ′ < U

In this regime, the ground state is always a fully imbalanced (I = 1) CDW phase

at J = 0. In this ground state, all the odd sites are empty, and the even sites have

n = dµ+U/2
U−U ′ e atoms each, or vice versa. The ground state undergoes a first-order

phase transition between different CDW phases periodically as µ is increased at

constant J . For U ′ near U/2, the CDW regions are partially surrounded by SS

lobes [see Fig. 3.3(c)]. As U ′ is increased further, the SS lobes grow in size and

connect together to form a continuous SS region [see Fig. 3.3(d)]. In Figs. 3.3(c)

and 3.3(d), the second-order transitions from CDW to SS are indicated by a dashed

line. The phase boundaries of these second-order transitions are given by

J =
1

z

√
(U ′n− µ) ((U − U ′)n− µ) (µ+ U − (U − U ′)n)

U + µ+ U ′n
. (3.11)

The SS undergoes a first-order phase transition to SF as J is increased further.

56



3.3 Inhomogeneous gas

In this section, we explore the phase diagram of a Bose gas in a harmonic trap,

in the presence of infinite-range interactions mediated by an optical cavity. In

experiments, the number of atoms N can be a control parameter. Further, the total

number of sites K is not well defined. Thus, it is convenient to define V = U ′N
K

,

and rewrite Eq. (3.4) as

Ĥcav = −V
N

(∑

i

(−1)xi+yi ĉ†i ĉi

)2

. (3.12)

To find the ground state of this model, we generalize Eq. (3.6), writing

|ψ〉 =
∑

i

∞∑

n=0

ani√
n!

(
ĉ†i

)n
|0〉 . (3.13)

The variational energy is then

Evar =− J
∑

〈ij〉

(∑

n

√
nanian+1,i

)(∑

n

√
nanjan+1,j

)

+
∑

n,i

(
U
n(n− 1)

2
− µin

)
|ani|2 − V

(∑
n,i(−1)xi+yin|ani|2

)2

∑
n,i n|ani|2

.

(3.14)

We minimize Evar with respect to all the variational parameters. Due to the

presence of infinite-range interactions in our model, traditional methods of treating

spatially varying potentials, such as the local-density approximation (LDA), fail.

We demonstrate the failure of the local-density approximation in the insulating

phases in Sec. 3.3.1. We present our numerical results for the phase diagram in

Sec. 3.3.2

57



rA
rB

MI1

CDW10

0.5 1

Πr
A

2

Na
2

0

0.1

0.2

Evar + ΜN

mΩ2
a

2
N

2

(a) (b)

Figure 3.4: (a) A n = 1 Mott insulating core of radius rA, surrounded by a CDW10

ring from radius rA to rB. (b) Scaled energy Evar as a function of scaled radius rA
for two cases: V = 0 (solid) and V = Nmω2a2

2π
(dotted).

3.3.1 J=0

In the absence of tunneling, every lattice site has an integer number of atoms. For

most of the experimentally relevant parameters, it suffices to consider only zero or

one atom on every site. One expects the cloud to have a MI1 core of radius rA with

unit filling, as shown in Fig. 3.4(a). This core is expected to be surrounded by a

CDW10 ring extending from radius rA to radius rB. The CDW10 ring is surrounded

by vacuum. In the limit of a slowly varying trap, the variational energy can be

approximated as

Evar =
1

a2

∫ rA

0

2πrdr

(
1

2
mω2r2 − µ

)

+
1

a2

∫ rB

rA

πrdr

(
1

2
mω2r2 − µ

)
− V

N

(
π(r2

B − r2
A)

2a2

)2

=
πmω2

8a2
(r4
A + r4

B)− πµ

2a2
(r2
A + r2

B)− V

N

(
π(r2

B − r2
A)

2a2

)2

.

(3.15)

Fixing the number of particles N = π
2a2

(r2
A + r2

B), the variational energy is

Evar =

(
mω2a2

4π
− V

N

)(
N − πr2

A

a2

)2

+
N2mω2a2

4π
− µN. (3.16)
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Figure 3.5: Comparison of LDA and full theory. Vertical axis shows the particle
imbalance I between even and odd sites. Horizontal axis shows the strength of
the long-range interaction. LDA (dashed line) shows a continuous growth of the
imbalance, while the full theory (solid line) shows a discontinuity.

This variational energy is plotted as a function of rA in Fig. 3.4(b). The energy

minimum occurs at

rA =





0 if V > Nmω2a2

4π
,

√
Na2

π
= rB if V < Nmω2a2

4π
.

(3.17)

The ground state transitions from a completely Mott insulating gas to a completely

checkerboarded gas at the critical value V = Nmω2a2

4π
, where the imbalance between

even and odd sites undergoes an abrupt jump from 0 to 1 (see solid line in Fig.

3.5). We contrast this result to the predictions of LDA (which are not valid because

of the long-range interactions). In traditional LDA, the local phase at position ~r is

that of a homogeneous system with chemical potential µ(~r). As seen in Fig. 3.2,

this implies that unless V = 0, one always has a CDW ring. A straightforward

calculation of the imbalance between even and odd sites shows that within this

approximation, the imbalance grows gradually as V is increased. The dashed

line in Fig. 3.5 depicts the imbalance obtained from this LDA calculation, with

K = 2N lattice sites.
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3.3.2 Phase diagram

In this section, we use numerical methods to calculate the phase diagram of an

inhomogeneous Bose gas in a harmonic trap. We work in a relatively small density

regime, and truncate the ansatz to allow 0, 1, or 2 atoms per site. For a 35 × 35

square lattice, we numerically minimize the variational energy in Eq. (3.14) with

respect to 2450 independent variational parameters. In the ground state, the

atoms arrange in concentric shells of insulating (MIn/CDWmn) and conducting

(SS/SF) regions. We label the state of the gas at every point in the phase diagram

by listing the phases of the atoms in these shells, in the order that they occur

outwards from the center of the cloud. For example, SF denotes that the entire

cloud is superfluid, and MI1-SF denotes that the center of the cloud is in the Mott

insulating phase with unit filling, surrounded by a superfluid ring. In Fig. 3.6,

we show the phase diagram for µ = 0.5U and mω2a2 = 0.01U . For the range of

hopping and long-range interaction that we consider, we find six different ways

that the atoms arrange, namely SF, MI1-SF, SS, SS-CDW10-SS, CDW10-SS, and

CDW20-SS-CDW10-SS. We find similar results for other parameters, but the exact

locations of the phase boundaries differ. Below, we discuss some of the interesting

features in the phase diagram in Fig. 3.6.

The MI1-SF and SF phases have no sublattice imbalance, I = 0. In these

phases, the long-range interaction term involving V does not contribute to the free

energy. Therefore in this regime, the phase boundary between SF and MI1-SF does

not depend on V , and the boundary is a vertical line at J = µ(U−µ)
z(U+µ)

' 0.04U for

our parameters.

In the absence of tunneling and for a fixed chemical potential µ, the size of

the cloud in the MI1-SF phase is r =
√

2µ
mω2 . The free energy [from Eq. (3.16)] is
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Evar = − πµ2

mω2a2
. In the CDW10-SS phase, the cloud extends up to r =

√
2(µ+V )
mω2 .

The free energy of the CDW10-SS phase is Evar = −π(µ+V )2

2mω2a2
. By comparing the

free energies in the two phases, we find that the phase boundary between MI1-SF

and CDW10-SS approaches V =
(√

2− 1
)
µ ' 0.2U as J → 0. Numerically, we

find that this is a good approximation even for J 6= 0.

A CDW20 core appears inside the CDW10 region if it is energetically cheaper

to add atoms to the center rather than the edge of the cloud. In the absence of

tunneling, the energy cost of adding an atom to an occupied site in the center of a

CDW10 cloud is U−µ−V . There is no energy cost for adding an atom at the edge

of a CDW10 cloud. Therefore in the absence of tunneling, the phase boundary

between CDW10-SS and CDW20-SS-CDW10-SS occurs at V = U − µ = 0.5U .

Numerically, we find that this is a good approximation even for J 6= 0.

The phase diagram in Fig. 3.6 exhibits a multicritical point at J ∼ 0.04U, V ∼

0.2U . At this multicritical point, the SF, MI1-SF, CDW10-SS, and SS-CDW10-SS

phases coexist. We find two other tricritical points at J ∼ 0.06U, V ∼ 0.27U , and

J ∼ 0.018U, V ∼ 0.5U .

3.3.3 Comparison to experiment

Experimentalists in Zurich attempted to generate a phase diagram similar to Fig.

3.6 [86]. By monitoring the intensity in the cavity, they could detect a transition

from a state with no sublattice imbalance to one in which imbalance is present.

For example, this technique can find the transition from SF to SS. The researchers

also monitored the condensate fraction as a function of lattice depth, finding kinks

which they interpreted as phase transitions. Indeed, the appearance of an insulat-
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ing region should generate such a kink. In generating their figures, the researchers

only include the kink at largest J/U . The resulting phase diagram agrees well with

the thick lines in Fig. 3.6(b). Further analysis of their data should reveal the other

curves in Fig. 3.6(b).

3.4 Summary

We calculated the phase diagram of a two-dimensional Bose gas with short-range

and long-range checkerboard interactions in an optical lattice. The long-range

checkerboard interactions are produced by trapping the Bose gas in a single mode

Fabry-Perot cavity, and illuminating it with a laser beam in the transverse direc-

tion. We found that, in the presence of these interactions, the Bose gas exhibits

four phases - a Mott insulator with integer filling, a charge-density wave with

different integer fillings on even and odd sites of the lattice, a superfluid with

off-diagonal long-range order, and a supersolid with SF and CDW orders. We

presented numerical results for the phase diagram of this homogeneous gas, and

obtained analytical expressions for all the second-order phase boundaries. We also

presented numerical results for the phase diagram of an inhomogeneous gas in a

harmonic trap. Our numerical phase diagram agrees well with the phase diagram

that was experimentally measured recently [86]. We predict that further analysis

will reveal more phases in their data.

The system considered in this study is interesting for several reasons. First,

due to long-range interactions, LDA fails. Second, the experiments in [86] made

the first detection of a supersolid phase. One caveat is that this supersolid phase

is a bit unusual, as it breaks only a global symmetry and not a local symmetry.
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Thus one would never expect to see domain walls in the checkerboard order, unless

they are imposed by using a cavity mode with nodes [81]. Beyond this system,

atoms coupled to optical cavities provide an avenue to control atom-atom inter-

actions. Similar setups which trap atoms in multimode cavities could be used to

produce controllable medium-range interactions between atoms [81]. Multimode

cavities can also be used to create phononlike excitations in the lattice. Atomic

clouds trapped in cavities can be used to explore non-equilibrium phases [82] and

nontrivial phase transitions in driven dissipative quantum systems [59, 35, 19].
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Figure 3.6: Phase diagram for an inhomogeneous Bose gas in a harmonic trap and
an optical lattice, plotted against (a) model parameters, and (b) experimentally
relevant parameters. Region I denotes MI1-SF phase, II is CDW10-SS, III is SS-
CDW10-SS, and IV is CDW20-SS-CDW10-SS. Thick lines denote phase boundaries
measured in experiments [86]. The chemical potential is chosen to be µ = 0.5U ,
and the trap frequency is such that mω2a2 = 0.01U . In (b), V0 is the lattice depth,
and ∆c is the detuning of the pump laser from the fundamental cavity mode. The

Rabi frequency is chosen to be η =
√

2π
N
ER
~ , the scattering length is 100 a0, and

the lattice constant and lattice depth in the z direction are 670 nm and 25ER, as
consistent with experiments [86].
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CHAPTER 4

PROPOSAL TO DIRECTLY OBSERVE THE KONDO EFFECT

THROUGH ENHANCED PHOTOINDUCED SCATTERING OF

COLD FERMIONIC AND BOSONIC ATOMS

MANY-BODY PHYSICS USING COLD ATOMS

Bhuvanesh Sundar, Ph.D.

Cornell University 2016

We propose an experimental protocol to directly observe the Kondo effect by scat-

tering ultracold atoms. We propose using an optical Feshbach resonance to engi-

neer Kondo-type spin-dependent interactions in a system with ultracold 6Li and

87Rb gases. We calculate the momentum transferred from the 87Rb gas to the 6Li

gas in a scattering experiment and show that it has a logarithmically enhanced

temperature dependence, characteristic of the Kondo effect and analogous to the

resistivity of alloys with magnetic impurities. Experimentally detecting this en-

hancement will give a different perspective on the Kondo effect, and allow us to

explore a rich variety of problems such as the Kondo lattice problem and heavy-

fermion systems. The work in this chapter was done in collaboration with Prof.

Erich Mueller. This chapter is adapted from a peer-reviewed article, Physical

Review A 93, 023635 (2016), which was co-authored with Prof. Erich Mueller.



Ultracold atomic gases provide a platform to engineer model Hamiltonians rel-

evant for condensed matter physics phenomena. One such intriguing phenomenon

is the Kondo effect [83, 63]. In this study, we propose an experimental protocol to

engineer and measure the scattering properties of Kondo-like interactions between

ultracold atoms. Such an experiment would give a new perspective on an iconic

problem.

The Kondo effect is a transport anomaly that arises when itinerant electrons

have spin-dependent interactions with magnetic impurities. The source of the

phenomenon is a spin-singlet many-body bound state formed between the Fermi

sea and an impurity. This bound state leads to resonant scattering of itinerant

electrons off the screened impurities. As the temperature is lowered, this resonant

scattering dominates over other scattering processes and leads to a characteristic

logarithmic temperature dependence of the resistivity of the material. When the

interactions between the electrons and the impurity are spin independent, no such

bound state is formed, and the scattering is not enhanced.

The Kondo effect has been studied widely since the formulation of the Kondo

model in 1964 [1, 2, 15, 16, 48, 49, 122, 58, 30]. Related problems such as the

Kondo problem have been exactly solved [163, 5, 161, 6]. However, despite decades

of intense research, some questions about the Kondo effect remain unresolved,

and some of the key theoretical predictions have never been directly seen. For

example, the electron cloud which screens the spin on the impurity has never

directly been imaged [2, 1, 16, 15]. More importantly the analogous problem

with an array of interacting impurities (the Kondo lattice) has aspects which are

not well understood [155]. Exploring the Kondo lattice problem is of paramount

importance to the understanding of heavy fermion systems and quantum criticality
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[49, 48].

In this study, we propose using cold atoms to directly observe enhanced Kondo

scattering. We envision a system consisting of a spin-1/2 Fermi gas and a dilute

Bose gas with spin S, where bosonic atoms play the role of magnetic impurities

and fermionic atoms play the role of electrons. To strengthen the analogy with

immobile spin impurities in the Kondo model, we consider bosons which are much

heavier than the fermions. Fermion-boson pairs such as 6Li-87Rb 7Li-85Rb or

6Li-133Cs are good candidates with large mass ratios. Alkaline-earth-metal and

rare-earth atoms are also promising.

We consider a rotationally symmetric interaction between the ultracold atoms,

which includes both density-density and spin-dependent interactions. We present

an experimental protocol to produce such an interaction using an optical Feshbach

resonance. For this general interaction, we calculate that the scattering cross sec-

tion is strongly enhanced by the Kondo effect. We propose directly measuring this

enhancement by launching the Bose gas into the Fermi gas with a small velocity.

One would then measure the momentum transferred to the Fermi gas. A num-

ber of related experiments have been used to probe atomic scattering in the past

[162, 154, 57, 135]. We show that at temperatures smaller than the Fermi tempera-

ture, the final momentum of the Fermi gas varies logarithmically with temperature,

analogous to the resistance of electrons in an alloy with magnetic impurities. The

temperature dependence of the transferred momentum, depicted in Fig. 4.1, has

a minimum which is a signature of the Kondo effect, and this minimum can be

detected at experimentally accessible temperatures. Alternatively, the enhanced

scattering could be seen in the damping of collective modes of the atomic clouds

in a trap [113].
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This chapter is organized as follows. In Sec. 4.1 we introduce our atomic system

and the model we consider. In Sec. 4.2 we explain how an optical Feshbach reso-

nance can be used to produce the interactions considered in our model. In Sec. 4.3

we calculate the momentum exchanged in a scattering experiment between atomic

clouds. We calculate the momentum transferred as a function of temperature per-

turbatively up to third order in the interaction strength. We explicitly describe

all parts of our calculation in Appendix C. In Sec. 4.4 we estimate experimen-

tal parameters needed to observe Kondo physics, and address the experimental

challenges faced. We summarize in Sec. 4.5.

4.1 Model

In this section we describe our model. In Sec. 4.2 we describe how to experimen-

tally implement our model.

We build our system out of spin-1/2 fermions and spin-S bosons. In our im-

plementation these will be hyperfine spins. We let the operators ˆ̃a†rα and ˆ̃b†rµ cre-

ate fermionic and bosonic atoms at position ~r and spin projection α =↑, ↓ or

µ = −S, .., S along the z-axis. Their Fourier transforms,

â†kα =
1√
V

∫
d3~r ˆ̃a†rαe

i~k·~r,

b̂†kµ =
1√
V

∫
d3~r ˆ̃b†rµe

i~k·~r,

(4.1)

create particles in momentum eigenstates. Above, V is the volume of the system.

We explore a model with a Hamiltonian Ĥ = Ĥ0 + Ĥint. The first term models
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Figure 4.1: Temperature dependence of the momentum ~P transferred from bosons
to fermions in a scattering experiment with photoinduced interactions. Both ~P
and temperature have been rescaled to dimensionless quantities. P0 denotes the
momentum transferred to the Fermi gas at zero temperature when the interactions
are spin independent (gs = 0). (Solid line) Spin-dependent interactions between
spin-1/2 fermions and spin-1 bosons with gs = −1

3
gn = 0.1εF

N/v
; (Dashed line) Spin-

independent interactions (gs = 0 and gn = −3 × 0.1εF
N/v

). The minimum in ~P is a
signature of the Kondo effect, and may be detected experimentally. In Sec. 4.4 we
estimate experimental parameters to achieve the interaction strength used here.
Inset shows a cartoon of the collision.

the kinetic energy of the fermions and bosons,

Ĥ0 =
V

(2π)3

∫
d3~k

(∑

α

(εk − µ)â†kαâkα +
∑

µ

Ekb̂
†
kµb̂kµ

)
,

εk =
~2k2

2ma

, Ek =
~2k2

2Mb

. (4.2)

For the interactions modeled by Ĥint, we consider a generic form of local spherically

symmetric pairwise Bose-Fermi interactions. Since the fermions have spin-1/2, the
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most general such interaction has the form,

Ĥint =

∫
d3~r

∑

αβµν

ˆ̃a†rαˆ̃arβ
ˆ̃b†rµ

ˆ̃brν

(
gs~σ

(a)
αβ · ~σ(b)

µν + gnδαβδµν

)
. (4.3)

We denote the vector of spin matrices for the fermions and bosons by ~σ(a) and

~σ(b), and δ refers to the Kronecker delta function. It is important to note that

Ĥint contains terms where α 6= β and µ 6= ν. This encodes the fact that the

atoms exchange spin when they collide. We point out that spherical symmetry

of the Hamiltonian is not a necessary feature to observe Kondo physics. Any

Hamiltonian which allows spin exchange processes at third order of interaction

strength would produce an enhanced scattering cross section at low temperatures.

We restrict ourselves to interactions modeled by Eq. (4.3), and we show in Sec.

4.2 that this has a simple experimental realization.

It is useful to rewrite Ĥint in momentum space as

Ĥint =
V 2

(2π)9

∫
d3~k

∫
d3~p

∫
d3~q

∑

αβµν

â†k+q,αâk+p,β b̂
†
k−q,µb̂k−p,ν

(
gs~σ

(a)
αβ · ~σ(b)

µν + gnδαβδµν

)
.

Our model in Eq. (4.4) differs from the one in the spin-S Kondo model [83] in two

respects. The bosonic atoms, which play the role of impurities, are mobile. Due

to their large mass however, the recoil of the bosonic atoms can be neglected, and

formally the physics is equivalent to that of immobile spin impurities. In addition

to the regular spin-S Kondo-like interaction, Eq. (4.4) contains a density-density

interaction. We show that in spite of such an additional interaction term, the

momentum transferred to the Fermi gas in a scattering experiment still has a

minimum at a certain temperature, albeit at a lower temperature than the case

with no density-density interaction.

The interaction we have considered in Eq. (4.3) does not occur in typical

cold atom experiments in which interaction strengths are tuned using a magnetic
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Feshbach resonance. In a typical magnetic Feshbach resonance, spin-exchange

collisions are off-resonance and will not be observed. In the following section we

propose using an optical Feshbach resonance to produce the interaction in Eq.

(4.3) .

4.2 An experimental setup

In this section we describe our proposal to experimentally implement the model

introduced in Sec. 4.1 using 6Li and 87Rb atoms as our itinerant fermions and

spin impurities. As we will show, producing a strong interaction between 6Li

and 87Rb using an optical Feshbach resonance requires a large matrix element

for photoassociation. Experiments [39] show 7Li and 85Rb to have the highest

photoassociation rate coefficient among all the bialkali metal combinations. We

expect their isotopes 6Li and 87Rb to have similar photoassociation rates, and we

chose 6Li and 87Rb in our proposal to produce the Kondo model because they are

readily available in ultracold atomic experiments. The 6Li and 87Rb atoms have

quantum numbers S = 1/2, L = 0 and I = 1 and 3/2.

In an optical Feshbach resonance, a laser beam provides a coupling between

the open scattering channel and a closed channel containing a bound state

[44, 74, 26, 153]; here the open channel is an electronic spin-singlet of 6Li and

87Rb, and the bound state is a highly excited LiRb molecular state. When the

laser is far detuned from resonance with the bound state, the bound state can be

adiabatically eliminated, and we are left with an AC Stark shift for the 6Li-87Rb

singlet. The triplet state sees no Stark shift. This provides a mechanism for spin

exchange. While this optically induced spin exchange has not yet been experi-
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Figure 4.2: (Color online) Setup to produce an optical Feshbach resonance between
6Li and 87Rb atoms. We couple 6Li and 87Rb atoms in their ground states to a
6Li87Rb molecule with angular momenta L = 1, S = 0 by shining a laser whose
detuning ∆ from the molecule is such that ~Γ,∆Ehf < ~∆ � ∆Efs. Here, Γ is
the molecular linewidth, and ∆Ehf and ∆Efs are the hyperfine and fine structure
splitting in the molecule. Typical values of Γ, ∆Ehf , and ∆Efs for molecules are
provided in the figure (for example, see [38]). In this limit, we obtain an effective
Kondo-type spin-dependent interaction between 6Li and 87Rb atoms.

mentally observed, there have been extensive studies of both elastic and inelastic

scattering properties near heteronuclear optical Feshbach resonances of 7Li and

85Rb [39, 38]. Thus the transition frequencies for forming 7Li85Rb molecules are

well known. We expect that the linewidths, transition matrix elements, and spec-

tral densities for other alkali-metal combinations such as 6Li87Rb molecules will be

similar.

Below we provide a mathematical framework to model the optical Feshbach

resonance and obtain an effective interaction between the 6Li and 87Rb atoms.

The scheme to produce the optical Feshbach resonance is illustrated in Fig. 4.2.

All the physics described in this section is local, and we have dropped the index

labeling the position of the atoms from the second-quantized operators.
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The energy density for the relevant electronic and nuclear degrees of freedom

in each atom and molecule is of the form,

ˆ̃H = ĤLi
HF + ĤRb

HF + Ĥmol + ĤFesh. (4.4)

Ĥmol models the binding energy of the molecule:

Ĥmol =
∑

mm′

Ebγ̂
†
mm′ γ̂mm′ , (4.5)

where γ̂†mm′ creates a molecule with an electronic spin S = 0 and electronic orbital

angular momentum L = 1. The indices m and m′ label the nuclear spins of the

6Li and 87Rb atoms. If the quantization axis of the electronic orbital angular

momentum is chosen along the direction of angular momentum of the laser photon

inducing the Feshbach resonance, then only one of the molecular states in the

L = 1 triplet is coupled via the laser to the atomic singlet. We denote the binding

energy of this molecular state by Eb.

The hyperfine Hamiltonians for the atoms are

ĤLi
HF = hALi

∑

mS ,m
′
S

mI ,m
′
I

â†mSmI âm′Sm′I~σ
(1/2)

mSm
′
S
· ~σ(1)

mIm
′
I

ĤRb
HF = hARb

∑

mS ,m
′
S

mI ,m
′
I

b̂†mSmI b̂m′Sm′I~σ
(1/2)

mSm
′
S
· ~σ(3/2)

mIm
′
I

(4.6)

where h is Planck’s constant, ALi = 152MHz and ARb = 3.4GHz are the hyperfine

coupling constants of 6Li and 87Rb[7], ~σ(S) is the vector of spin-S matrices, and

â†mSmI and b̂†mSmI create a 6Li and 87Rb atom in the state |mSmI〉. In terms of the

hyperfine eigenstates,

|mS,mI〉 =
∑

F,mF

CFmF
mSmI

|F,mF 〉 (4.7)

where CFmF
mSmI

are Clebsch-Gordan coefficients.

73



The terms in ĤFesh describe the interactions between the photoassociation laser

and the atoms. We model this photoinduced molecular formation by

ĤFesh =
∑

mm′

Ωei(
~k·~r−ωt)γ̂†mm′

â 1
2
mb̂− 1

2
m′ − â− 1

2
mb̂ 1

2
m′√

2
+ H.c. (4.8)

where ~r is the position of the atoms, and ~~k and ω are the momentum and fre-

quency of the laser photon inducing molecule formation. In the rotating frame,

the detuning ∆ between the atomic and molecular states is ∆ = ω − Eb
~ , and Ω is

the transition matrix element from the atomic to the molecular state.

The laser detuning is typically larger than the transition matrix element. We

also choose the detuning to lie between the hyperfine and fine structure of the

molecular states, and to be larger than the molecular lnewidth: Γ,∆Ehf < ~∆�

∆Efs. This is done for three reasons. First, choosing a detuning less than the fine

structure splitting ensures that only the molecule with L = 1, S = 0 is coupled.

Second, choosing a detuning larger than hyperfine structure ensures that all hy-

perfine molecular states in the L = 1, S = 0 manifold have the same transition

matrix element Ω. Third, a detuning larger than the linewidth ensures that the

occupation in the molecular state will be small, and enables us to obtain an effec-

tive interaction between the 6Li and 87Rb in second order perturbation theory in

Ω:

ˆ̃Hint =
∑

mm′

−Ω2

~∆

(
â 1

2
mb̂− 1

2
m′ − â− 1

2
mb̂ 1

2
m′√

2

)†
×
(
â 1

2
mb̂− 1

2
m′ − â− 1

2
mb̂ 1

2
m′√

2

)
. (4.9)

Using Eq. (4.7), the operators â†mSmI and b̂†mSmI can be projected into the hyperfine

eigenstate basis. Assuming that the chemical potential is set such that the F = 3/2

and F = 2 manifolds are unoccupied, we project ˆ̃Hint into the F = 1/2 and F = 1

manifolds. We obtain an effective interaction

ˆ̃̃
Hint =

−Ω2

~∆

∑

αβµν

â†αâβ b̂
†
µb̂ν

(
− 1

12
~σ

(a)
αβ · ~σ(b)

µν +
1

4
δαβδµν

)
. (4.10)
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The first term in Eq. (4.10) is of the form of Kondo-like interactions with

gs = 1
12

Ω2

~∆
, and the second term a density-density interaction with gn = −1

4
Ω2

~∆
,

where gs and gn were defined in Eq. (4.3). Generally, in addition there would also

be intrinsic interactions which modify the values of gs and gn in the experiment.

To explore Kondo physics, gs should be positive.

If one wanted to exactly produce the Kondo model (where gn = 0), one could

add more photoassociation lasers, for example, coupling the electronic spin-triplet

atomic states. However as we show in Sec. 4.3, the presence of a nonzero gn does

not change the physics.

4.3 Kondo-enhanced scattering between 87Rb and 6Li

Here we calculate the momentum transfer in a collision between a fermionic cloud

and a bosonic cloud. We show that spin-exchange collisions lead to a logarithmic

temperature dependence of the momentum transferred. This logarithm is charac-

teristic of the Kondo effect, and analogous to the behavior of electrical resistance

of magnetic alloys. As shown in Fig. 4.1, it leads to a minimum in the momentum

transferred. The most naive way to measure this momentum exchanged would be

to launch the Bose gas into a stationary Fermi gas and measure the final momen-

tum of the Fermi gas. We briefly consider an alternative method in Sec. 4.3.1.

The duration of interaction between a boson and the Fermi gas in the exper-

iment described above is t = L/v where L is the size of the Fermi cloud. We

calculate the momentum transferred from the Bose gas to the Fermi gas at time

t to zeroth order in 1/Mb, first order in ~v, and third order in the interaction pa-

rameters gs and gn. We perform this calculation for general values of gs and gn
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that are independent of each other. At the end of our calculation we specialize

to the values of gs and gn produced by our proposal in Sec. 4.2. Since L is a

macroscopic quantity and we work in the small v limit, we make a long time ap-

proximation wherever possible. We assume that the Bose gas is dilute, and neglect

events involving scattering of a fermion with more than one boson. Equivalently

we calculate the momentum transferred by one boson with momentum Mb~v, and

sum over all bosons. The Fermi surface will play an important role.

We consider the collision of the Fermi gas with one boson with spin pro-

jection m at time 0. The momentum of the Fermi gas at time t is then

~Pm = V
(2π)3

∫
d3~k

∑
α ~~knkαm(t), where

nkαm(t) = 〈b̂Mbv,m(0)â†kα(t)âkα(t)b̂†Mbv,m
(0)〉 (4.11)

is the occupation of fermions with momentum ~k and spin projection α at time t.

In Eq. (4.11) the expectation value is taken over a thermal ensemble of fermions,

with no bosons present. The bosonic creation operator preceding the ket state

in Eq. (4.11) ensures that we calculate the occupation nk after the collision of

one boson with the Fermi gas. Since the bosons are spin unpolarized, the average

momentum imparted by a boson is ~Pav = V
3(2π)3

∫
d3~k

∑
αm ~~knkαm(t). Multiplying

by Nb, the number of bosons, the net momentum of the Fermi gas is

~P (t) =
NbV

3(2π)3

∫
d3~k

∑

αm

~~knkαm(t). (4.12)

In Appendix C.1, we describe our diagrammatic perturbation theory approach

for calculating nkαm(t). We find that

1

3

∑

m

nkαm(t) = fk−
4t~k · ~vρ(εk)

V 2

∂fk
∂εk
×
(
S(S + 1)

4
g̃2
s + g̃2

n −
g̃3
sS(S + 1)

4(2π)3

∫
d3~p

fp
εk − εp

)
,

(4.13)

76



plus terms which scale as t0, v2 or 1/Mb. Due to our use of point interactions,

the interaction parameters gs and gn are renormalized to g̃s and g̃n. These renor-

malized (physical) coupling constants are the ones appearing in Eq. (4.13). This

renormalization of the interaction strength occurs at all orders of perturbation

theory.

To calculate ~P (t), we sum the contributions due to all momentum states,

and include the temperature dependence of the fermionic chemical potential,

µ = εF

(
1− π2

12

(
kBT
εF

)2
)

+O
(
kBT
εF

)4

. We find that at long times,

~P =
3S(S + 1)Nb

8

(
J

εF

)2

(kFL) ~kF

((
1 +

4

S(S + 1)

(
g̃n
g̃s

)2
)(

1 +
π2

6

(
kBT

εF

)2
)

− 3J

2εF

(
1.13 +

(
2.6− π2

48

)(
kBT

εF

)2

+
1

2
log

kBT

4εF

(
1 +

5π2

12

(
kBT

εF

)2
)))

,

(4.14)

where J = g̃s
N
V

, and N
V

is the density of fermions. In Eq. (4.14) we have neglected

terms which scale as t0, v2, 1
Mb

or T 4. According to our proposal in Sec. 4.2,

g̃n
g̃s

= −3 and S = 1. The result of Eq. (4.14) is plotted in Fig. 4.1 using

these parameters and J = 0.1εF . For comparison, we also plot the momentum

transferred to the Fermi gas for spin-independent interactions with the same value

of g̃n = −3 × 0.1εF
N/V

and g̃s = 0. The logarithmic temperature dependence of ~P

for spin-dependent interactions is characteristic of Kondo physics. Equation (4.14)

breaks down when J
εF

log kBT
εF
' O(1). Below this temperature, the logarithmic

increase saturates to a constant. Calculation of this saturation is the subject of

the Kondo problem and can be addressed with renormalization group or Bethe

ansatz methods. Equation (4.14) also breaks down when v ' kBT
~kF

.
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The momentum transferred |~P | has a minimum at a temperature

Tmin ∼
3

2πkB

√
JεF

1 + 4g̃2n
g̃2sS(S+1)

. (4.15)

For the parameters g̃n
g̃s

= −3, S = 1, and J = 0.1εF , this minimum occurs at

a temperature T
TF
' O(0.05). At this temperature and interaction strength, the

momentum imparted by one boson to the Fermi gas is |
~P |
Nb
' 3

4
~kF

(
J
εF

)2

(kFL).

For a 20µm long Fermi cloud at a density of 1013cm−3, the momentum imparted

per boson is nearly 1.2~kF . We estimate in Sec. 4.4 that achieving J = 0.1εF would

require high intensity lasers and tight trapping of the fermions. The observation

of this minimum will be a direct experimental confirmation of Kondo physics.

4.3.1 Alternative methods to measure enhanced Kondo

scattering

Here we briefly explain an alternative method to measure the enhanced Kondo

scattering between a Fermi cloud and a Bose cloud. We consider inducing dipole

oscillations of a Bose cloud and a Fermi cloud in a harmonic trap of frequency

ω. The clouds will collide every half-cycle and exchange momentum ~P . As a

result the amplitude of oscillations of the Fermi cloud will reduce each half cycle.

Conservation of momentum implies that the maximum fermion displacement X

will reduce each half cycle by δX ' |~P |
Namaω

where Na is the number of fermions;

the Bose cloud’s amplitude will not change very much because of the bosons’

heavy mass. The Bose-Fermi interaction interval is longer for a smaller relative

momentum, and vice versa. Thus the momentum exchanged |~P | is independent

of the relative velocities of the cloud, leading to a linear decay of the amplitude

rather than exponential; dδX
dt
∼ |~P |

Namaπ
. If the Bose-Fermi interactions are Kondo-

78



like, the damping rate of amplitude of oscillations will have a minimum at the

same temperature as |~P | does, Tmin ∼ 3
2πkB

√
JεF

1+
4g̃2n

g̃2sS(S+1)

. For a typical amplitude of

oscillation X ' 100µm in a trap of frequency ω = 2π×10 Hz, and if Na
Nb

= 200, the

amplitude will decay to zero in about 12 oscillations at T = Tmin. The observation

of a minimum in the damping rate will also be an experimental confirmation of

Kondo physics.

4.4 Experimental considerations for an optical Feshbach

resonance

In this section we estimate experimental parameters to optimize model parame-

ters, gs and gn, and the rates of heating and atom losses. The relevant independent

parameters in an experiment that implements our proposal are the intensity I of

the laser used to induce a Feshbach resonance, the laser detuning ∆, and the den-

sities nf and nb of the fermions and bosons. These parameters have to be chosen

to satisfy three criteria: a) The gas is always in thermal equilibrium; b) The al-

lowed duration of the experiment is long enough for spin-dependent interaction

effects to be significant; and c) The temperature and time scales in our proposal

are accessible to current experiments. We in fact find below that satisfying these

criteria requires a large intensity of about 1 MW/cm2, and that a typical exper-

iment would only last about 11µs before the gases heat up beyond the desired

temperature. These limitations place our proposal beyond the reach of current ex-

periments. A judicious choice of atomic species and of the resonance may reduce

the intensity required.

Experiments implementing optical Feshbach resonances typically suffer from
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high heating and atom loss rates, because pairs of atoms absorb photons to form

bound molecules due to the molecules’ finite linewidth. The excited molecular

states have a finite recoil momentum, and either dissociate into free atoms with

large kinetic energies, spontaneously decay to ground molecular states with a large

kinetic energy, or tunnel out of the system. Spontaneous decay into particles with

a large kinetic energy heats the gas, and molecules tunneling out of the system

leads to particle loss.

The effect of a finite linewidth of the molecule can be incorporated by making

the AC Stark shift obtained in Eq. (4.9) complex:

g =
−Ω2

~∆ + i~Γ
, (4.16)

where ∆ = ω − Eb
~ is the laser detuning from the molecular bound state. The

real part of g, |Re(g)| = Ω2 |∆|
~(∆2+Γ2)

, is a measure of the interaction strength, and

determines the magnitude of the model parameters gs and gn [see Eq. (4.10)].

The temperature scale, Tmin, for observing Kondo physics is related to gsnf and

gnnf where nf is the density of fermions [see Eq. (4.15)]. The magnitude of the

imaginary part of g is Im(g) = −Ω2 Γ
~(∆2+Γ2)

. This imaginary part is denoted

by ~KPA, where KPA is the inelastic collision rate co-efficient. A finite inelastic

collision rate leads to a finite rate of molecule formation,

γmol = KPAnb, (4.17)

where the rate of molecule formation is limited by the density nb of bosons, since

they are more dilute. Typically, the lifetime of a molecule is much shorter than

the time a molecule takes to tunnel out of the system due to its recoil momentum.

Therefore the dominant consequence of molecule formation is heating of the gas

due to spontaneous decay. The recoil energy of the particles resulting from a

spontaneous decay is larger when the excited molecule dissociates into a pair of
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atoms than when the molecule decays to a ground molecular state, due to the light

mass of 6Li atoms. Therefore we focus on the heating of the gas due to spontaneous

dissociation of a molecule into a 6Li and a 87Rb atom.

When an excited molecule dissociates, the recoil energy of the 6Li atom is

ER = h2

2mLiλ2
, where λ is the wavelength of the laser used to induce the Feshbach

resonance. The rate of spontaneous decay, Γ, of the molecule is typically much

shorter than the rate of molecule formation, γmol. Therefore the heating rate is

given by

Γheat = γmolER. (4.18)

An experimental run is limited to last until the gas heats up beyond the desired

temperature. The temperature scale for observing Kondo physics is given by Tmin in

Eq. (4.15). At this temperature, the duration of an experimental run is δt = kBTmin

Γheat
.

During the experiment, collisions between the atoms maintain the gases in

thermal equilibrium. The rate of collision between fermions and bosons is Γcoll =

nbσ〈v〉. Here, the collision rate is limited by the density of bosons, because they

are more dilute; σ and 〈v〉 are the scattering cross-section and average speed of

the fermions. The scattering cross-section is related to g as

σ = π
( µg

4π~2

)2

, (4.19)

where as = µg
4π~2 is the scattering length induced by the Feshbach resonance, and

µ is the reduced mass of a 6Li-87Rb atom pair. To satisfy two of the three criteria

stated earlier, we have to choose the intensity and detuning of the laser such that

|Re(g)|nf δt
~ = 3

2πER

∆
Γ

√
nf εF
228~

Ω2∆
∆2+Γ2 > 1, and

Γcollδt = 3µ2

32π2~4ER
∆vF

Γ

√
nf εF
228~

(
Ω2∆

∆2+Γ2

)3
> 1.

(4.20)

Here we have used gs = |Re(g)|
12

and gn = Re(g)
4

, as produced by our proposal [Eq.

(4.10)]. We note that the square of the matrix element for optical coupling, Ω2, is
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proportional to the intensity of the laser. Ab-initio calculating Ω2 for a transition

requires detailed knowledge of molecular physics. Instead we heuristically calculate

Ω2 at different intensities from available experimental data for resonant photoas-

sociation at a fixed intensity [38]: KPA = 4× 10−11cm3/s at I = 100 W/cm2.

In Fig. 4.3, we plot
|Re(g)|nf δt

~ and Γcollδt as a function of laser intensity and

detuning, fixing the fermion density at 1014 cm−3. This density is typical in ex-

periments. The bosons’ density is irrelevant for calculating
|Re(g)|nf δt

~ and Γcollδt.

We also choose a typical optical wavelength λ = 500 nm, and a typical molec-

ular linewidth Γ = 100 MHz [38]. We require the detuning to be larger than

the linewidth of the molecule, and smaller than the fine structure splitting in the

molecule. This limits the detuning to lie between 100 MHz and ∼ 10 GHz. In this

region of detunings, we find that we require an intensity I & 1 MW/cm2 to make

|Re(g)|nfδt > 1 and Γcollδt > 1. In particular, at I = 1 MW/cm2, Γcollδt is max-

imized at ∆ = 220 MHz. For these parameters and nb =
nf
100

, |Re(g)|nfδt = 1.73,

Γcollδt = 7.7, Tmin = 0.09TF = 1.22µK, and the duration of the experiment is

δt = 11µs. We point out, however, that an intensity of 1 MW/cm2 is significantly

larger than typical intensities used in experiments on ultracold gases. For example,

the intensity used to produce an optical Feshbach resonance in Ref. [38] is only

100 W/cm2. We also point out that an experimental duration as short as 11µs

is atypical in ultracold atomic experiments. Such a short experimental duration

is not suitable for the scattering experiment we propose to measure an enhanced

scattering cross-section. A judicious choice of the resonance, for which the optical

couplings Ω are larger, may reduce the intensity required to produce the Feshbach

resonance. Another strategy could be to increase the density of fermions using a

tight trap.
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4.5 Summary

We considered scattering between a spin-1/2 Fermi gas and a dilute spin-

unpolarized Bose gas. As an example we considered 6Li and 87Rb as our itinerant

fermions and bosonic magnetic impurities. We proposed using an optical Fesh-

bach resonance to produce rotationally symmetric interactions between the 6Li and

87Rb atoms, which included both spin-dependent Kondo-like and spin-independent

density-density interactions. We argued that these interactions would give rise to

enhanced Fermi-Bose scattering. We perturbatively calculated the temperature

dependence of the momentum transferred to the Fermi gas in a scattering exper-

iment, up to third order in the Bose-Fermi interaction strength. We showed that

the temperature dependence of the momentum transferred has a minimum at a

characteristic temperature and is logarithmic at low temperatures, characteristic of

the Kondo effect and analogous to the behavior of electrical resistance in magnetic

alloys.

Our proposal to implement spin-dependent interactions requires overcoming

significant experimental challenges such as using high intensity lasers to achieve

large interaction strengths. However, overcoming these challenges enable the pos-

sibility of exploring exotic phenomena due to Kondo physics. The ground state

of a Bose-Fermi mixture with Kondo-type spin-dependent interactions should dis-

play interesting correlations, with each boson surrounded by a screening cloud of

fermions with opposite spin [1]. These clouds may be observable through various

imaging techniques [25, 126, 105]. Similar experiments with bosons confined to a

lattice would probe an analog of the Kondo lattice problem.

One can explore other techniques to experimentally produce Kondo-type inter-

actions. For example, optically coupling the electronic triplet states of 6Li-87Rb
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with excited molecular states will lead to a rotationally asymmetric interaction

which also displays Kondo physics. Alternatively, one can realize the Ander-

son model and Kondo-like situations by trapping impurities in deep potentials

[50, 14, 121, 116].
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Figure 4.3: (Color online) A density plot of (a)
|Re(g)|nf δt

~ and (b) Γcollδt as a
function of laser intensity and detuning. Here Re(g) is the coherent spin-dependent
interaction strength, Γcoll is the collision rate between fermions and bosons, and
δt is the allowed experimental duration before the gas significantly heats up. The
black lines mark the boundary where |Re(g)|nfδt and Γcollδt are larger than 1.
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CHAPTER 5

ENGINEERING QUANTUM DIMER MODELS VIA LARGE-SPIN

MOTT-INSULATING ULTRACOLD BOSONS

MANY-BODY PHYSICS USING COLD ATOMS

Bhuvanesh Sundar, Ph.D.

Cornell University 2016

We propose an experimental protocol to produce quantum dimer models using

ultracold bosonic atoms with a large hyperfine spin confined in a deep optical

lattice. We explain how an optical Feshbach resonance can control the strength

of interactions in different spin channels, leading to a limit where the low energy

Hilbert space is defined by non-overlapping short-range dimers. Solving this model

in different lattice geometries yields the columnar phase on a square lattice, and

the
√

12 ×
√

12 phase on a triangular lattice. The ground state is unknown on a

cubic lattice. We give protocols to measure correlations in the ground state using

photoassociation and quantum gas microscopy. Experimentally implementing our

proposal would allow us to explore models that have a long history in condensed

matter physics, and experimentally resolve theoretically unknown phase diagrams

in three dimensional lattices. The work in this chapter was done in collaboration

with Prof. Erich Mueller, Prof. Michael Lawler, and Todd Rutkowski. This work

is being written up for publication in a peer-reviewed journal at the time of writing

this dissertation.



Quantum dimer models—which describe the dynamics of close-packed hard-

core dimers on a lattice—have received continued attention since their original

proposal by Rokhsar and Kivelson in 1988 [137]. Several factors have motivated

these studies, including an intimate connection to Anderson’s resonating valence

bond description of high-Tc superconductivity [3, 90], the appearance of quantum

critical points [139, 143, 156], topological order and fractionalized excitations [79,

160, 112, 142, 51], their mapping to lattice gauge theories [110, 108, 106], and their

potential applications in quantum computation [68, 77]. In these models, interplay

between quantum fluctuations, hard-core constraints, and the lattice geometry

allows this rich variety of phenomena to emerge from a surprisingly simple physical

picture. Unfortunately, quantum dimer models are believed to be cleanly realized

in very few solid state systems, and thus far their study has remained mostly

theoretical. Here we present a proposal to realize a range of dimer models in a gas

of bosons in an optical lattice.

We consider a gas of bosonic atoms with no orbital angular momentum, l =

0, and relatively large hyperfine spin f , in an optical lattice. Candidate atoms

could be 52Cr with f = 3, or 87Rb with f = 2. By tuning the lattice depth

and trapping potential one can drive the system into a Mott insulating state with

one atom per site [70] — effectively yielding immobile spins on each site. These

spins interact via a virtual super-exchange process [4]. We propose manipulating

these super-exchange interactions by optically coupling pairs of atoms to an excited

L = 1, S = 0 molecular state. When tuned sufficiently off-resonance, this optical

coupling favors the formation of nearest neighbor hyperfine singlets, which we refer

to as dimers. In the limit of large f , the dimers are monogamous and orthogonal:

A state where site i forms a singlet with site j is orthogonal to one in which

i forms a singlet with k, as long as j 6= k. The resulting theory has the form
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of a dimer model, whose ground state depends on the geometry of the lattice.

We find the
√

12 ×
√

12 phase on a triangular lattice [132]. However, the phases

on a 2D square and a 3D cubic lattice are a matter of contention [139, 92, 10],

which these experiments could resolve. We discuss quantum gas microscopy and

photoassociation protocols for detecting these various phases.

There have been proposals to observe related physics in cold atom experiments,

including crystallized dimer phases [33, 168, 67, 172, 42], resonating plaquette

phases [21, 165, 151], and dimer liquid phases [62, 18, 144, 146, 138]—all hallmarks

of the quantum dimer model. However, these studies involve different underlying

physical mechanisms, and did not explore mappings of their systems onto quantum

dimer models. In this chapter, we show that quantum dimer models describe the

effective low-energy interactions of large-spin Mott insulating bosonic atoms in a

unit-filled optical lattice, when the spin-dependent interactions are dominated by

scattering processes in the spin-singlet channel.

To derive a quantum dimer model for our cold atom system, we begin with a

tight-binding model for bosons in an optical lattice, which includes spin-dependent

interactions. We write this model as [148]

Ĥ = −J
∑

〈ij〉

f∑

m=−f

(
b̂†i,mb̂j,m + H.c.

)
+

2f∑

F=0,2,...

UF

F∑

M=−F
ÂF,M†i ÂF,Mi , (5.1)

where i runs over all sites of the lattice, and 〈ij〉 is a sum over all distinct nearest

neighbor pairs. The b̂†i,m(b̂i,m) operators create (annihilate) a bosonic atom at

lattice site i with hyperfine spin f and spin projection m, while the ÂF,M†i (ÂF,Mi )

operators create (annihilate) a pair of bosonic atoms on site i in total angular

momentum state F with total projectionM . These pair operators are related to the

bosonic operators via the relation ÂFM†i =
∑

mC
F,M
m,M−mb̂

†
i,mb̂i,M−m, where CF,M

m,m′ =

〈f,m; f,m′|F,M〉 are Clebsch-Gordan coefficients. The kinetic energy term in Eq.
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(5.1)—parameterized by the positive constant J—models the tunneling of bosons

between neighboring lattice sites. The on-site potential energy—described by the

set of parameters UF—models the local spin-dependent s-wave scattering. The

interaction UF includes contributions from both the intrinsic interaction Ubg
F , and

an optical Feshbach resonance, UFesh
F , which we describe below. The scattering

occurs through only the even total-spin channels due to Bose statistics of the

atoms. We choose atomic species for which the intrinsic interaction Ubg
F > 0.

Typically, Ubg
F is uniform among all the even spin channels. As we explain below,

UFesh
F is not.

We induce an optical Feshbach resonance between pairs of atoms by shining

a laser tuned near a transition to an excited molecular state, labeled by orbital

angular momentum L, electronic spin S, and total electronic angular momentum

J . The nuclear angular momentum is not important as long as the detuning of

the laser is large compared to the hyperfine splitting. Since the atoms are chosen

to have no orbital angular momentum, the only allowed optical transitions are

to L = 1. When the detuning of the laser is large compared to the linewidth of

the molecular state, second order perturbation theory gives rise to a local spin-

dependent pairwise interaction. As explained in Ref. [149], the induced interaction

will be of the form in Eq. (5.1) if we choose a molecule with S = 0. In this case,

there is no spin-orbit coupling in the molecular state, and therefore in the second

order process, the photon’s angular momentum decouples from the atoms’. The

resulting spin-dependent interaction is of the form UFesh
F = Ω2

δ
αF . The matrix

element Ω2 is proportional to the intensity of the laser, and δ is the detuning from

the molecular transition. The coefficient αF is the square of the overlap between

the electronic spin singlet (S = 0) and the hyperfine state with total spin F [104]:

αF = |〈(s1 s2)S(i1 i2)I;F |(s1 i1)f1(s2 i2)f2;F 〉|2 . (5.2)
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Here, s1 = s2 = s are the electronic spin of the atoms, i1 = i2 = i are the nuclear

spin of the atoms, f1 = f2 = f are the hyperfine spin of the atoms, and the

atoms have no orbital angular momentum, l1 = l2 = 0. The parameters S, I and

F describe the state of a pair of atoms: S = 0 because the atoms only couple

to the molecular state when they are in a singlet, in which case I = F . The

notation (j1 j2)j denotes that the total spin j is the sum of spins j1 and j2. The

coefficients αF [in Eq. (5.2)] are related to Wigner 9j symbols. The results for αF

are different for different atomic species. For alkali atoms, which have s = 1/2,

we calculate αF from straightforward recursion relations, derived by using Clebsch

Gordan coefficients to expand states of fixed S in terms of hyperfine states. We

find

α2f =
2f + 1

4(i+ 1/2)2
,

α2f−2 =
3f

2(i+ 1/2)2
,

...

α0 =
2f + 1

4(i+ 1/2)
.

These results are valid for both the ground state (f = i − 1/2) and the excited

state (f = i+ 1/2) manifolds. For 52Cr, which has l = i = 0, the values of αF are

αF = δF,0,

where δ is the Kronecker delta symbol. An important feature of the coefficients

αF in these two cases is that they decrease in magnitude as F increases.

We tune the Feshbach coupling and detuning such that Ubg
F ' UFesh

0 . In this

limit, the total interaction coefficients UF form an increasing sequence, and in

particular, UF 6=0 � U0. We consider a deep lattice where J � U0, and by extension

J � UF . This suppresses tunneling, and the atoms only virtually hop between
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Figure 5.1: (Color online) Examples of singlet cover states. The numbers label
the lattice sites, while connected sites represent a spin singlet between the atoms
on those sites. In this example, |a〉 = Â†1,2Â

†
4,5Â

†
3,6 |0〉. The notation |(i, j) : a〉

denotes a state where sites i and j are paired in a singlet, the original partners
of i and j in |a〉 are paired in another singlet, and all the other bonds in |a〉 are
left unchanged. This notation is used in Appendix D to derive an effective dimer
model [Eq. (5.6)].

neighboring lattice sites. Taking U0 � UF 6=0 causes the virtual hopping to be

predominantly in the hyperfine spin singlet channel. At unit filling, the effective

Hamiltonian at second order in the tunneling strength is then

Ĥeff = −2J2

U0

∑

〈ij〉
Â00†
ij Â

00
ij , (5.3)

where Â00
ij =

∑
mC

00
m,−mb̂imb̂j,−m annihilates a pair of bosons at sites i and j in

a hyperfine spin singlet. Hereafter we drop the superscripts, and refer to this

operator as Âij.

The low energy eigenstates of Eq. (5.3), with one atom per site, can be written

as a superposition of singlet coverings. Each singlet cover is written as

|a〉 =
∏

(i,j)∈a
Â†ij |0〉 , (5.4)

where (i, j) refers to a singlet bond between sites i and j, which are not necessarily

nearest neighbors. In Eq. (5.4), each lattice site appears only once in the product

over bonds. Some examples of singlet coverings are illustrated in Fig. 5.1. As ex-

plicitly shown in Appendix D, this subspace of states is closed under the operation

of Ĥeff .

91



The singlet coverings defined in Eq. (5.4) are not orthogonal. Their overlap

Sa,b = 〈a|b〉 may be calculated through their transition graph, as shown in Fig.

D.1 in Appendix D. We follow Ref. [137] and construct an orthogonal basis from

these non-orthogonal singlet coverings,

|ā〉 =
∑

b

(√
S−1

)
a,b
|b〉 . (5.5)

We call the orthogonal basis states |ā〉 as dimer states. For large f , the overlap

matrix S is the identity to leading order.

If we take f → ∞, the dimer covers |ā〉 are eigenstates of Ĥeff with energy

Ea = −2J2

U0
Na, where Na is the number of nearest neighbor bonds in |a〉. In this

limit, the states consisting only nearest neighbor bonds span a degenerate ground

state manifold. We use second order degenerate perturbation theory in (2f + 1)−1

to calculate an effective model in this space. On a square, triangular, or a cubic

lattice, we find

ĤQDM =
∑
−t (|=〉 〈q|+ H.c) + V (|=〉 〈=|+ |q〉 〈q|)− t′ (|=p〉 〈p=|+ H.c) . (5.6)

The first term in this effective theory—parameterized by t—models a rotation

of two parallel bonds within a four-site plaquette from a vertical to a horizontal

configuration, or vice versa. Such four-site plaquettes with two parallel bonds are

called flippable plaquettes. The second term—parameterized by V—models an

effective interaction between two parallel bonds in a flippable plaquette. The third

term—parameterized by t′— models a resonance for three bonds within a six-site

plaquette. The effective dimer model on a hexagonal lattice has similar terms, but

acting on larger plaquettes. In this lattice, the smallest ring exchange involves

three bonds, and therefore its amplitude t is of O ((2f + 1)−2). Table 5.1 lists the

parameters t, t′ and V for different lattice geometries, and the expected ground

state.
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We point out that our proposal to produce a quantum dimer model using cold

atoms has significant advantages over electronic systems. First, using atoms with

a large spin allows for a controlled expansion in terms of a parameter, (2f + 1)−1,

which can be made relatively small. This is in contrast to spin-1/2 electronic

systems, where orthogonality issues are neglected and 1/f expansions are made

despite the lack of a small parameter. Second, tuning between lattice geometries

is relatively easy in systems with cold atoms [73, 97, 164]. Third, dimer models

studied in electronic systems typically have t′ = 0; our proposal produces a richer

model with t′ 6= 0.

Lattice geometry t
J2/U0

V
J2/U0

t′

J2/U0
Ground state

at large f
Square lattice 4

2f+1
8

(2f+1)2
8

(2f+1)2
unresolved

Triangular lattice 8(f+1)
(2f+1)2

14
(2f+1)2

8
(2f+1)2

√
12×

√
12

Cubic lattice 4
2f+1

8
(2f+1)2

8
(2f+1)2

unknown

Honeycomb lattice 12
(2f+1)2

O (1/f 4) O (1/f 4) plaquette

Table 5.1: List of ring exchange amplitudes and bond interactions obtained from
Eq. (5.3), in different lattice geometries.

The effective model for our system [Eq. (5.6)] has a rich phase diagram, which

has been well explored along t′ = 0 in a number of geometries [107, 139, 112, 108,

111, 109, 106, 132, 169, 92, 150, 131, 10]. For 2D bipartite lattices with t′ = 0, one

finds only valence bond solid phases. Dimer liquid phases are found in 3D, and

non-bipartite 2D lattices. The phase diagram at finite t′ is less explored [117].

The valence bond solid phases described in the literature fall into four types:

columnar, plaquette, mixed, and staggered. The columnar phase is built from

vertical columns of horizontal parallel bonds, or vice versa. In the plaquette phase,

dimer bonds resonate between different configurations inside a multi-site unit cell.

For example, on a square lattice, the plaquette phase has a unit cell with four lattice
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sites; two parallel bonds resonate between horizontal and vertical configurations

inside a plaquette. The plaquette phases on a triangular lattice have larger unit

cells. The mixed phase is a hybrid between the columnar and plaquette phases.

The staggered phase has no flippable plaquettes. The columnar phase is favored

at large negative V , and the staggered phase at large positive V . There is some

contention about the presence of plaquette and mixed phases as the ground state

on a square lattice, and the location of the phase boundaries [10]. In nearly all

theoretical analyses, our model on a square lattice yields a columnar phase as

f → ∞. Experiments on ultracold atoms with large f should be able to resolve

the theoretical debates. On the triangular lattice, as f → ∞, we expect to see a

plaquette phase, called the
√

12×
√

12 phase, which has a 12-site unit cell [132].

We propose to characterize the ground state of our model by measuring the

dimer-dimer correlation function 〈Â†ijÂijÂ†klÂkl〉. We provide a protocol to exper-

imentally image dimer bonds and measure dimer-dimer correlations. Researchers

have calculated dimer-dimer correlations for the ground states of quantum dimer

models (with t′ = 0) in different lattice geometries [106, 132, 169, 92]. We numer-

ically calculate the correlations in our system for both large and realistic values of

f .

To image dimer bonds, we propose shining an additional weak near-resonant

photoassociation laser on the system, tuned near a molecular state with angular

momenta L = 1, S = 0. The resonant light drives a pair of neighboring atoms

in an electronic spin singlet, S = 0, to the molecular state via a second order

process: tunneling brings two neighboring atoms to the same site, and absorption

of a resonant laser photon produces an excited molecule. The excited molecule

spontaneously decays back into a pair of atoms after a short lifetime. The resulting
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atoms have a large kinetic energy, and leave the system. We propose to image the

system with a quantum gas microscope [9, 75]. The image has empty neighboring

sites wherever a neighboring pair of atoms absorbed a resonant photon to form a

molecule. These neighboring atoms may or may not have been entangled in a dimer

before they absorbed a photon. Absorption of a photon by unentangled atoms leads

to false positives in our scheme to image dimer bonds. However, entangled atoms

and unentangled atoms absorb photons at different rates. Calculation of the rate of

absorption of photons by entangled atoms, and the related problem of absorption

rate of entangled photons, is a rich field of study [45, 56, 71, 115, 134, 171]. We

leave the calculation of the photon absorption rate by a pair of atoms entangled

in a dimer versus an unentangled pair to a future study. Here we hypothesize that

for atoms with a large spin, an entangled pair of atoms absorbs photons at a much

higher rate than an unentangled pair. In this case, most of the neighboring empty

sites in the image taken by the quantum gas microscope were occupied by atoms

entangled in a dimer. In this way, a fraction of the dimer bonds can be imaged in

a system consisting of atoms with a large spin. Correlations between two dimers

can be extracted by analyzing the data from multiple realizations.

We simulate our system numerically by computing the ground state of the

model in Eq. (5.3). The natural basis for a numerical simulation is spanned by

the non-orthogonal singlet coverings. In our numerics, we do not rely on the large

f approximation. Neither do we restrict ourselves to the low energy sector with

only nearest neighbor dimer bonds. We are, however, limited to a small system

with no more than 16 lattice sites. We exactly diagonalize the Hamiltonian [in Eq.

(5.3)] to compute the ground state. We then compute the dimer-dimer correlation

function 〈Â†ijÂijÂ†klÂkl〉.
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(a) (b)

Figure 5.2: Dimer-dimer correlations on a square lattice with periodic boundary
conditions, for (a) f = 100 and (b) f = 3. The reference dimer is marked grey in
the lower left corner. The thickness of the lines is proportional to the strength of
correlation. (Color online)

We plot the correlation between a bond (i, j) and a bond (k, l) on a square

lattice for two different values of f in Fig. 5.2, where the bond (i, j) is fixed at

the lower left corner, and the bond (k, l) is varied. For a large value of f , we find

correlations consistent with a columnar phase. We also calculate correlations for a

typical atomic species, 52Cr, which has f = 3. The correlations are weaker in this

case, but still indicative of a columnar phase.

We also compute the ground state of our model on a triangular lattice. For this

lattice, we anticipate the ground state to be the
√

12×
√

12 phase [132]. Therefore

we assume our system to have the shape of a unit cell in the
√

12×
√

12 phase. We

again plot the correlation between a bond (i, j) and a bond (k, l) on a triangular

lattice for two different values of f in Fig. 5.3. For both large and experimentally

accessible values of f , we find correlations consistent with the
√

12×
√

12 phase.

In summary, we propose an experimental protocol to produce quantum dimer

models using ultracold bosonic atoms with a large hyperfine spin confined in a
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(a) (b)

Figure 5.3: Dimer-dimer correlations on a triangular lattice for (a) f = 100 and
(b) f = 3. The reference dimer is marked in grey. The thickness of the lines is
proportional to the strength of correlation.

deep optical lattice. We show that the inter-particle interactions produced by an

optical Feshbach resonance lead to a rich dimer model. For bosonic atoms with

a large spin, the ground state of our model is the columnar phase on a square

lattice, and the
√

12 ×
√

12 phase on a triangular lattice. The ground state on

a 3D cubic lattice is a matter of theoretical contention. We present protocols to

detect the ground state by experimentally measuring dimer-dimer correlations via

a combination of photoassociation and quantum gas microscopy. We computed

dimer-dimer correlations for various spins on a small system, finding that the

expected large f results persist into the experimentally accessible range of spins.

Experimentally implementing our proposal will provide a method to produce a

quantum dimer model in a clean way with a controllable small parameter, namely

(2f+1)−1. It will allow us to explore the phase diagram of quantum dimer models,
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which is an iconic problem and has a long history in condensed matter physics.

Moreover, our proposal will allow us to experimentally resolve theoretical debates

regarding the phase diagrams in three dimensional lattices.
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CHAPTER 6

SEMICLASSICAL TOOLS TO STUDY THE DYNAMICS OF A

FERMI GAS DURING A TIME-OF-FLIGHT EXPANSION

MANY-BODY PHYSICS USING COLD ATOMS

Bhuvanesh Sundar, Ph.D.

Cornell University 2016

We develop semiclassical tools to calculate the dynamics of a Fermi gas during a

time-of-flight expansion. We use Wigner functions to model a superfluid Fermi gas.

We show that the equations of motion for the Wigner functions resemble semiclassi-

cal Boltzman equations. We show that these equations map to the Gross Pitaevskii

equation in the limit of strongly interacting fermions. We compare the dynamics

obtained by numerically integrating the semiclassical Bolztman equations to those

obtained by integrating the Gross Pitaevskii equation. Our calculations are useful

for all experiments involving a time-of-flight expansion of an ultracold gas. The

work in this chapter was done in collaboration with Prof. Erich Mueller.



6.1 Introduction

Dynamics are ubiquitous in experiments on ultracold atomic gases. Some of the

dynamical phenomena that ultracold atom researchers are interested in include

quenches [133, 103, 43, 66, 20, 23, 128], periodic driving [125, 27, 130, 32, 89, 88,

40, 41, 157], transport phenomena [85], stability of condensates [40, 41, 157, 27,

89, 88, 32, 130], thermalization [43, 76, 147, 34], prethermalization [12, 60], and

time-of-flight expansions [29, 166, 100]. Researchers lack a simple approach to

calculate the dynamics of a superfluid Fermi gas. Here, we attempt to rectify this

problem by introducing a novel semiclassical approximation. We use this approach

to model an ultracold superfluid Fermi gas in a harmonic trap. We calculate the

properties of the Fermi gas as it expands when the trap is released. This particular

study is motivated by several experiments which explore dynamics of solitons in

Fermi gases [167, 120, 8]. We believe that this approach can be used to calculate

signatures in the density of an expanding spin-imbalanced Fermi gas to detect the

Fulde-Ferrel-Larkin-Ovchinnikov phase [54, 87, 95, 96]. We find that the results

of our semiclassical approach are accurate for strongly interacting fermions, but

suffer from numerical instabilities for weakly interacting fermions.

Dynamics of superfluid Fermi gases are well-modeled by time-dependent

Bogoliubov-de-Gennes equations [31]. However, integrating time-dependent

Bogoliubov-de-Gennes equations can be difficult. In the strongly interacting limit,

the dynamics of the Fermi gas are modeled well by the Gross-Pitaevskii equation,

which is a simpler equation to integrate [61, 46]. In this chapter, we develop semi-

classical tools to calculate the dynamics of a superfluid Fermi gas for both weak

and strong interactions, during a time-of-flight expansion. We calculate and nu-

merically integrate the equations of motion for the Wigner function [129] and an
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anomalous Wigner function for a Fermi gas. We show that the equations of mo-

tion of the Wigner functions map to the Gross-Pitaevskii equation in the strongly

interacting limit of the Fermi gas. Our technique is complementary to modeling

the dynamics via time-dependent Bogoliubov-de-Gennes equations. We also nu-

merically integrate the equations of motion for the Wigner functions of a weakly

interacting Fermi gas, during a time-of-flight expansion. At short times, our nu-

merical results agree with results obtained from Bogoliubov-de-Gennes equations.

We discuss limitations of our semiclassical approach for a weakly interacting Fermi

gas at long times.

This chapter is organized as follows. In Sec. 6.2, we introduce the formalism

for Wigner functions. In Sec. 6.3, we calculate the Wigner functions for a homo-

geneous Fermi gas with no trap. In Sec. 6.4, we calculate the Wigner functions

for a strongly interacting inhomogeneous Fermi gas, and show that the equation

of motion for the order parameter is the Gross Pitaevskii equation. In Sec. 6.5,

we explore the dynamics of the gas during a time-of-flight expansion. We compare

the results of our semiclassical approach with those obtained from Gross-Pitaevskii

and Bogoliubov-de-Gennes equations. We conclude in Sec. 6.6.

6.2 Formalism

An interacting Fermi gas in a harmonic trap is modeled by a Hamiltonian

Ĥ =

∫
d3~r

∑

σ

ψ̂†σ(~r, t)

(−~2∇2

2m
+ V (~r)− µ

)
ψ̂σ(~r, t)+Uψ̂†↑(~r, t)ψ̂↑(~r, t)ψ̂

†
↓(~r, t)ψ̂↓(~r, t),

(6.1)

where V (~r) = 1
2
mω2r2 is the trapping potential. Here, ψ̂σ(~r, t) is the fermionic field

operator in real space in the Heisenberg picture, and U is the contact interaction
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strength. In reality, fermions have a finite range of interaction. The renormalized

physical interaction strength is g, given by

1

g
=

1

U
+

1

(2π~)3

∫
d3~p

2εp
, (6.2)

where εp = p2/2m is the dispersion for non-interacting free particles. The three

dimensional scattering length as is related to g as g = 4π~2as
m

. We self-consistently

define a mean field order parameter

∆(~r, t) = U
〈
ψ̂↓(~r, t)ψ̂↑(~r, t)

〉
. (6.3)

The mean field Hamiltonian modeling the gas is

Ĥ =

∫
d3~r

∑

σ

ψ̂†σ(~r, t)

(−~2∇2

2m
+ V (~r)− µ

)
ψ̂σ(~r, t) + ∆(~r, t)ψ̂†↑(~r, t)ψ̂

†
↓(~r, t)

+ ∆∗(~r, t)ψ̂↓(~r, t)ψ̂↑(~r, t)−
|∆(~r, t)|2

U
.

(6.4)

The Heisenberg equation of motion for the field operators is

i~∂tψ̂(~r, t) = [ψ̂(~r, t), Ĥ]. (6.5)

In the mean field theory, this Heisenberg equation of motion and its hermitian

conjugate leads to the time-dependent Bogoliubov-de-Gennes equations:

i~∂t




ψ̂↑(~r, t)

ψ̂†↓(~r, t)


 =



−~2∇2

2m
+ V (~r)− µ ∆(~r, t)

−∆∗(~r, t) ~2∇2

2m
− V (~r) + µ







ψ̂↑(~r, t)

ψ̂†↓(~r, t)


 .

(6.6)

As mentioned earlier, the dynamics of the Fermi gas are captured well by these

equations. In this section, we introduce an alternative formalism to compute the

dynamics of a Fermi gas. Later, we will compare the results obtained by numeri-

cally integrating the time-dependent Bogoliubov-de-Gennes equations [Eq. (6.6)]

with those obtained from our alternative formalism.
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The quantum Wigner function for a Fermi gas is defined as

Wσ(~r, ~p, t) =

∫
d3~s

(2π~)3

〈
ψ̂†σ

(
~r +

~s

2
, t

)
ψ̂σ

(
~r − ~s

2
, t

)〉
e−i~p·~s/~. (6.7)

The Wigner function can also be written as:

Wσ(~r, ~p, t) =

∫
d3~q

(2π~)3

〈
ˆ̃ψ†σ

(
~p+

~q

2
, t

)
ˆ̃ψσ

(
~p− ~q

2
, t

)〉
ei~q·~r/~, (6.8)

where ˆ̃ψσ(~p, t) =
∫
d3~r ψ̂σ(~r, t)ei~p·~r/~ is the fermionic field operator in momentum

space. The Wigner function is always real. Observables such as the density of the

gas can be calculated from the Wigner function:

nσ(~r, t) =
∫
d3~p Wσ(~r, ~p, t),

ñσ(~p, t) =
∫
d3~r Wσ(~r, ~p, t).

(6.9)

In this sense, the Wigner function is a semiclassical analog of the phase space den-

sity of a Fermi gas. However, it is important to note that Wσ is a strictly quantum

mechanical distribution which can take both positive and negative values. For

example, negative Wigner functions are indicative of entanglement in the system

(see [65] for example).

We also define an anomalous Wigner function

F (~r, ~p, t) =

∫
d3~s

(2π~)3

〈
ψ̂↓

(
~r +

~s

2
, t

)
ψ̂↑

(
~r − ~s

2
, t

)〉
e−i~p·~s/~

=

∫
d3~q

(2π~)3

〈
ˆ̃ψ↓

(
~q

2
− ~p, t

)
ˆ̃ψ↑

(
~q

2
+ ~p, t

)〉
ei~q·~r/~.

(6.10)

The order parameter is related to the anomalous Wigner function as

∆(~r) = U

∫
d3~p F (~r, ~p, t). (6.11)

Using the Heisenberg equations of motion for the field operators, i~∂tψ̂(~r, t) =
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[ψ̂(~r, t), Ĥ], we calculate the equations of motion for Wσ(~r, ~p, t) and F (~r, ~p, t):

∂tW↑ =
~p

m
· ∇W↑ −∇V · ∇pW↑ +

1

i~

∫
d3~s

(2π~)3
e−i~p·~s/~

×
(

∆

(
~r − ~s

2
, t

)〈
ψ̂†↑

(
~r +

~s

2
, t

)
ψ̂†↓

(
~r − ~s

2
, t

)〉

−∆∗
(
~r +

~s

2
, t

)〈
ψ̂↓

(
~r +

~s

2
, t

)
ψ̂↑

(
~r − ~s

2
, t

)〉)

∂tW↓ =
~p

m
· ∇W↓ −∇V · ∇pW↓ +

1

i~

∫
d3~s

(2π~)3
e−i~p·~s/~

×
(

∆

(
~r − ~s

2
, t

)〈
ψ̂†↑

(
~r − ~s

2
, t

)
ψ̂†↓

(
~r +

~s

2
, t

)〉

−∆∗
(
~r +

~s

2
, t

)〈
ψ̂↓

(
~r − ~s

2
, t

)
ψ̂↑

(
~r +

~s

2
, t

)〉)

i~∂tF =

(
2 (εp − µ+ V (~r))− ~2

4m
∇2 − mω2~2

4
∇2
p

)
F +

∆

(2π~)3
−
∫

d3~s

(2π~)3
e−i~p·~s/~

×
(

∆

(
~r − ~s

2
, t

)〈
ψ̂†↓

(
~r − ~s

2
, t

)
ψ̂↓

(
~r +

~s

2
, t

)〉

+∆

(
~r +

~s

2
, t

)〈
ψ̂†↑

(
~r +

~s

2
, t

)
ψ̂↑

(
~r − ~s

2
, t

)〉)
. (6.12)

Here, ∇ denotes spatial gradient, and ∇p denotes gradient in momentum space.

The equations of motion for Wσ resemble Boltzman equations, with additional

terms due to the order parameter. In the limit that ∆ varies smoothly in space,

we can Taylor expand ∆
(
~r ± ~s

2
, t
)

about ~r:

∆

(
~r ± ~s

2
, t

)
= ∆(~r, t)± ~s · ∇∆(~r, t) +O(∇2∆). (6.13)

In this limit, Eq. (6.12) can be rewritten as

∂tW↑ =
~p

m
· ∇W↑ −∇V · ∇pW↑ −

2

~
Im(∆∗F (~r, ~p, t))− Re(∇∆∗ · ∇pF (~r, ~p, t)) +O

(
∇2∆

)

∂tW↓ =
~p

m
· ∇W↓ −∇V · ∇pW↓ −

2

~
Im(∆∗F (~r,−~p, t))− Re(∇∆∗ · ∇pF (~r,−~p, t)) +O

(
∇2∆

)

i~∂tF =

(
2 (εp − µ+ V (~r))− ~2

4m
∇2 − mω2~2

4
∇2
p

)
F −∆ (W↑(~r, ~p, t) +W↓(~r,−~p, t))

− i~
2
∇∆ · ∇p (W↑(~r, ~p, t)−W↓(~r,−~p, t)) +

∆

(2π~)3
+O

(
∇3∆

)
.

(6.14)
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6.3 Homogeneous gas

In this section, we calculate Wσ(~r, ~p, t) and F (~r, ~p, t) for the case of a homoge-

neous gas (ω = 0) in steady state. In this limit, we can explicitly diagonalize the

Hamiltonian in Eq. (6.4), and calculate Wσ(~r, ~p, t) and F (~r, ~p, t). We find that

Wσ(~r, ~p, t) =
1

2(2π~)3

(
1− εp − µ

Ep

)

F (~r, ~p, t) =
−1

2(2π~)3

∆

Ep
,

(6.15)

where Ep =
√

(εp − µ)2 + |∆|2 is the single particle dispersion for a superfluid. We

can calculate the order parameter by substituting the self-consistency condition

[Eq. (6.11)] into the definition of the renormalized interaction [Eq. (6.2)]. We

obtain the implicit equation for ∆:

1

g
=

1

U
+

1

(2π~)3

∫
d3~p

2εp

=
1

2(2π~)3

∫
d3~p

(
1

εp
− 1

Ep

)
.

(6.16)

We investigate the behavior of Wσ and F in the limits of weakly and strongly

interacting fermions. We calculate the density of the gas and the order parameter

in these limits.

6.3.1 Weakly interacting limit

For a weakly interacting gas, ∆ � µ. For momenta far away from the Fermi

surface, p� pF , we Taylor expand Ep as

Ep = |εp − µ|+
|∆|2

2|εp − µ|
+O(∆4) (6.17)
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We do not make this approximation when p ∼ pF . We find that the density of the

gas in the weakly interacting limit is

nσ =

∫
d3~p Wσ(~r, ~p, t) =

4π

3
ρ3
F +O(∆2). (6.18)

where ρF = 8πm
√

2mµ
(2π~)3

is the single particle density of states at the Fermi energy.

We calculate the order parameter using the implicit equation Eq. (6.16); we obtain

∆ =
8µ

e2
e−2/|g|ρF +O

(
e−4/|g|ρF ) . (6.19)

6.3.2 Strongly interacting limit

In the strongly interacting limit, the fermions form a dilute gas of weakly bound

diatomic molecules with a large negative chemical potential µ, which we denote as

−ν. For strong interactions, ∆� ν. We Taylor expand Ep as

Ep = |εp + ν|+ |∆|2
2|εp + ν| +O(∆4) (6.20)

We find that the density of the gas in this limit is

nσ =

∫
d3~p Wσ(~r, ~p, t) =

π2∆2m2

√
2mν(2π~)3

+O(∆4). (6.21)

We use the implicit equation in Eq. (6.16) to calculate the order parameter; we

obtain

∆ =
√

8ν(Eb − ν), (6.22)

where Eb = ~2
2ma2s

is the binding energy of a weakly bound molecule.

We also observe from Eq. (6.15) that

2εpF −∆ (W↑ +W↓) +
∆

(2π~)3
= −(2Eb + gnσ)F. (6.23)

We will use this relation in Sec. 6.4 to derive the Gross Pitaevskii equation.
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6.4 Gross Pitaevskii equation

In this section, we consider cases where the effective chemical potential varies

smoothly in space due to a weak harmonic trap, V (~r) = 1
2
mω2r2, and ∆ varies

smoothly in space and time due to a harmonic trap and/or excitations such as

solitons. We derive an equation of motion for ∆(~r, t) in the strongly interacting

regime, and show that it is the Gross Pitaevskii equation.

For an inhomogeneous gas that varies smoothly in space, we calculateWσ(~r, ~p, t)

and F (~r, ~p, t) from Eq. (6.15), where we replace the constants ∆ and µ with their

smoothly varying counterparts. In particular, we find that Eq. (6.23) is replaced

by

2εpF (~r, ~p, t)−∆(~r, t) (W↑(~r, ~p, t) +W↓(~r, ~p, t))+
∆(~r, t)

(2π~)3
= −(2Eb+gnσ(~r, t))F (~r, ~p, t).

(6.24)

Substituting this relation in the equation of motion for F (~r, ~p, t) [Eq. (6.14)], we

find that

i~∂tF =

(
2
(
V (~r) + ν − Eb −

gnσ
2

)
− ~2

4m
∇2 − mω2~2

4
∇2
p

)
F

− i~
2
∇∆ · ∇p (W↑(~r, ~p, t)−W↓(~r,−~p, t)) +O

(
∇3∆

)
. (6.25)

We obtain the Gross Pitaevskii equation by integrating Eq. (6.25) over all mo-

menta,

i~∂t∆ = − ~2

2mb

∇2∆ +

(
1

2
mbr

2ω2 − µb + gbnb

)
∆ +O

(
∇3∆

)
. (6.26)

Here, mb = 2m is the mass of a weakly bound molecule, µb = 2(Eb − ν) is the

chemical potential for the molecules, gb = g is the effective interaction between

molecules in the mean field approximation, and nb = nσ is the number of molecules.
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6.5 Example: Time-of-flight expansion

In this section, we numerically compute the dynamics of a quasi one-dimensional

Fermi gas along the x axis during a time-of-flight expansion along the x axis. We

initialize the gas in a weak harmonic trap of frequency ω along the x axis, and

a tight harmonic trap in the other two directions. We consider two cases, one

where the Fermi gas has a soliton and another where it does not. We calculate

the initial equilibrium order parameter of the Fermi gas before the time-of-flight

expansion using the time-independent Bogoliubov-de-Gennes equations [Eq. (6.6)

with the left hand side set to zero] and the self-consistency condition [Eq. (6.11)].

We compute Wσ(~r, ~p, t) and F (~r, ~p, t) from the order parameter using Eq. (6.15).

This computation is quick, and agrees well with an analogous computation of Wσ

and F from their microscopic definitions, Eqs. (6.7) and (6.10). After calculating

the Wigner functions in the ground state, we release the trap in the x direction

only. We compute the dynamics of Wσ and F by numerically integrating their

equations of motion [Eq. (6.14)].

In the strongly interacting regime, the gas is modeled well by the Gross-

Pitaevskii equation [Eq. (6.26)]. In this regime, we show that our numerical results

obtained from the semiclassical [Eq. (6.14)] and Gross Pitaevskii equations [Eq.

(6.26)] agree. In the weakly interacting regime, we show that our numerical results

obtained from the semiclassical [Eq. (6.14)] and time-dependent Bogoliubov-de-

Gennes equations [Eq. (6.6)] agree at short times. We discuss the limitations of

our semiclassical approach at long times.

First, we consider an inhomogeneous strongly interacting quasi-one dimensional

superfluid Fermi gas in its ground state which is initially trapped in an anisotropic

harmonic potential. We release the trap along the weak direction, which is the
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Figure 6.1: Dynamics of a strongly interacting Fermi gas during a time-of-flight
expansion in the x direction. The gas is initialized in a weak harmonic trap of
frequency ω in the x direction, and tight traps in the y and z directions. During
the expansion, only the trap in the x direction is switched off. (a,b) Density and
order parameter of the Fermi gas versus x at y = z = 0, computed by numerically
integrating the equations of motion for Wσ and F [Eq. (6.14)]. The density is
normalized by the density at the centre of the trap at t = 0. (c) Order parameter
computed by numerically integrating the Gross Pitaevskii equation [Eq. (6.26)].
In the figures, x0 =

√
~/mω is the harmonic oscillator length. The blue, pink, and

yellow curves correspond to t = 0, 10~/µ, and 20~/µ, where the expansion began
at t = 0. For typical trap frequencies ω ∼ 30 Hz, and system sizes ∼ 1 mm for
ultracold gases, 20~/µ corresponds to about 12 ms of expansion.

x direction. Figures 6.1a,b show the density and order parameter of this gas

at different times during the expansion, computed from numerically integrating

the equations of motion of Wσ and F [Eq. (6.14)]. Figure 6.1c shows the order

parameter at different times, computed from the Gross-Pitaevskii equation [Eq.

(6.26)]. The results for the order parameter obtained from the two approaches agree

well with each other. The relation between the density and the order parameter is

also in agreement with Eq. (6.21).

In Fig. 6.2, we consider the expansion of a strongly interacting quasi-one

dimensional gas with a soliton. The gas was again initially in an anisotropic

harmonic potential, and the trap was released along the weak direction, which is

the x direction. In Fig. 6.2a,b, we plot the density and order parameter of the

gas at different times during the expansion, computed by numerically integrating

Eq. (6.14). In Fig. 6.2c, we plot the order parameter for the same scenario, where
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Figure 6.2: Dynamics of a strongly interacting Fermi gas during a time-of-flight
expansion in the x direction. The gas is initialized in a weak harmonic trap of
frequency ω in the x direction, and tight traps in the y and z directions. The gas
is also initialized to have a soliton. During the expansion, only the trap in the x
direction is switched off. (a,b) Density and order parameter of the Fermi gas versus
x at y = z = 0, computed by numerically integrating the equations of motion for
Wσ and F [Eq. (6.14)]. The density is normalized by the maximum density in the
trap at t = 0. (c) Order parameter computed by numerically integrating the Gross
Pitaevskii equation [Eq. (6.26)]. In the figures, x0 =

√
~/mω is the harmonic

oscillator length. The blue, pink, and yellow curves correspond to t = 0, 10~/µ,
and 20~/µ, where the expansion began at t = 0. For typical trap frequencies
ω ∼ 30 Hz, and system sizes ∼ 1 mm for ultracold gases, 20~/µ corresponds to
about 12 ms of expansion.

the order parameter is computed from the Gross-Pitaevskii equation [Eq. (6.26)].

The results for the order parameter obtained from the two approaches again agree

with each other. An important feature of the plots in Fig. 6.2 is the appearance

of a soliton as a reduction in density. This density dip is used in experiments as

a marker to image a soliton. We find that the density dip is visible even when

the gas expands, allowing researchers to image solitons even after a time-of-flight

expansion.

In Fig. 6.3, we consider an inhomogeneous weakly interacting quasi-one di-

mensional superfluid Fermi gas in its ground state which is initially trapped in an

anisotropic harmonic potential. Figures 6.3a,b show the density and order param-

eter of this gas at different times during the expansion, computed from numerically

integrating the equations of motion of Wσ and F [Eq. (6.14)]. The initial profile
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Figure 6.3: Dynamics of a weakly interacting Fermi gas during a time-of-flight
expansion in the x direction. The gas is initialized in a weak harmonic trap of
frequency ω in the x direction, and tight traps in the y and z directions. During
the expansion, only the trap in the x direction is switched off. (a,b): Density and
order parameter of the Fermi gas versus x at y = z = 0, computed by numerically
integrating the equations of motion for Wσ and F [Eq. (6.14)]. (c,d): Density and
order parameter of the Fermi gas versus x at y = z = 0, computed by numerically
integrating the time-dependent Bogoliubov-de-Gennes equations [Eq. (6.6)]. The
density in (a) and (c) is normalized by the density at the centre of the trap at t = 0.
The blue and pink curves correspond to t = 0 and 5~/µ, where the expansion began
at t = 0. At t = 5~/µ, the numerical integration in (a) and (b) develops errors due
to the truncation of Eq. (6.14) at second derivatives. For typical trap frequencies
ω ∼ 30 Hz, and system sizes ∼ 1 mm for ultracold gases, 5~/µ corresponds to
about 3 ms of expansion.

of the order parameter (depicted in blue in Fig. 6.3) drops sharply near the edges

of the cloud. In this region, the order parameter does not vary smoothly, and

our assumption to truncate Eq. (6.14) at ∇2∆ is not valid. Therefore, the nu-

merical computation develops errors which appear as noise during the dynamics.

These errors are visible in the pink curve at t = 8~/µ in Fig. 6.3b. These errors
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propagate to the density as well soon after. In contrast, the dynamics computed

from time-dependent Bogoliubov-de-Gennes equations [Eq. (6.6)], shown in Figs.

6.1c,d, are smooth and error-free. Including higher derivatives in the equations for

Wσ and F to reduce numerical errors requires high spatial resolution in the nu-

merics. For such high spatial resolution, the semiclassical approach does not have

a significant advantage over numerically integrating time-dependent Bogoliubov-

de-Gennes equations [Eq. (6.6)] in computation time.

6.6 Conclusions

We developed semiclassical tools to compute the properties of a Fermi gas during

dynamics. We used Wigner functions to describe a superfluid Fermi gas. The

equations of motion of these Wigner functions resemble Boltzman equations in

statistical mechanics. We considered examples of an expanding superfluid Fermi

gas with and without a soliton. We numerically integrated the Boltzman-type

equations to compute the density and order parameter of the Fermi gas during its

expansion. We compared these results with those obtained from Gross-Pitaevskii

and time-dependent Bogoliubov-de-Gennes equations. Our results agree well with

those from Gross-Pitaevskii equations for strong interactions. Our results agree

well with those from time-dependent Bogoliubov-de-Gennes equations for weak

interactions and short times.

Several experiments aim to measure important things using a time-of-flight

expansion. One example is the FFLO gas, which has a train of solitons, and

therefore a train of density dips. Typically, the gas is initialized in an array of

tubes. The images are integrated columnar densities after a TOF. It is speculated
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that the solitons would couple via tunneling and align with each other. This can

be verified by our computation. TOF on the BEC side was done by [] using blah.
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CHAPTER 7

CONCLUSIONS

I have used my doctoral study to explore a wide variety of topics. In this

chapter, we summarize the results of my explorations. The topics of our study

have been motivated by recently performed experiments, or experiments that can

be performed with current technology. Experiments on ultracold atoms progress

at a rapid rate, and significant experimental advances have been made since we

completed our theoretical explorations on each topic in my doctoral study. In this

chapter, we also review the experimental progress made on topics that we have

theoretically explored, in the years between the completion of our exploration and

the writing of this dissertation.

In Chapter 2, Prof. Erich Mueller and I proposed an experimental method to

perform universal quantum computation using information stored in the Majorana

fermion excitations of a quasi one dimensional topological superfluid formed in a

cold Fermi gas. This project was motivated by several experiments that induced

artificial sin orbit coupling in both Bose [162] and Fermi gases [158, 24]. In these

experiments, the researchers shone two Raman lasers on an ultracold gas. The

lasers couple two Zeeman states of the atoms in a ground state manifold to an

excited manifold. In the far detuned limit, the atoms undergo a two photon tran-

sition, and flip their Zeeman spin. The two photon process also imparts a net

momentum kick to the atoms, which is equal to the difference in momenta of the

photons in the two Raman lasers. This process induces an artificial spin orbit

coupling for the atoms along the direction of the net momentum kick, say the x

direction. The induced spin orbit coupling is equal parts in Rashba and Dres-

selhaus spin orbit coupling [17, 37]. Local interactions between fermionic atoms
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give rise to an effective px interaction in the dressed basis. In the limit of strong

interactions, this gas forms a topological superfluid. We consider the case where

the gas is trapped in a quasi one dimensional geometry. In this case, the system

supports zero-energy Majorana fermion excitations at its edges. The ground state

of the system is doubly degenerate, and encodes a qubit. We proposed using mi-

crowave spectroscopy to read and manipulate the qubit encoded in the ground

state. We provided protocols to implement all the quantum gates necessary for

universal quantum computation.

Our theoretical exploration of performing universal quantum computation us-

ing Majorana fermion excitations in a quasi one dimensional superfluid of spin

orbit coupled fermionic atoms was completed in 2013, and published in the article

Physical Review A 88, 063632 (2013), in co-authorship with Prof. Erich Mueller.

However, at the time of writing this dissertation, researchers have not yet suc-

cessfully tuned to the regime of a strongly interacting spin orbit coupled Fermi

gas. Experiments have been hindered by the challenge due to finite occupation

of excited states. The Raman lasers couple atoms in their ground state manifold

to an excited manifold. The excited atoms can spontaneously decay, and impart

a lot of kinetic energy to the gas. This causes heating. Typically, experimenters

overcome this issue by increasing the detuning of the Raman lasers from the ex-

cited manifold, which reduces the occupation of the excited state. Increasing the

detuning in turn reduces the strength of p wave interactions, which reduces the

critical temperature for topological superfluidity. An alternative strategy is to pro-

duce synthetic spin orbit coupling without using Raman lasers. There have been

several recent proposals that adopt this strategy (for example, [93]).

In 2016, researchers performed a related experiment, in which they induced
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two dimensional synthetic Rashba spin orbit coupling for 40K atoms using three

Raman lasers [64]. Here, each laser coupled to a different Zeeman state of the

lowest hyperfine manifold (F = 9/2) of 40K. This system with two dimensional

Rashba spin orbit coupling is more similar to the scenario in spin orbit coupled

condensed matter systems such as Sr2RuO4. In the strongly interacting regime,

these systems will also support Majorana fermion excitations.

In Chapter 3, Prof. Erich Mueller and I modeled an experiment performed in

Tilman Esslinger’s group at ETH Zurich [86]. In this experiment, the researchers

trap 87Rb atoms inside a transversely pumped single mode optical cavity. The

researchers also shine an external laser along the cavity axis, to maintain a lattice

along the cavity direction at all times. The cavity mode constructively interferes

when the atoms arrange in a checkerboard pattern, and lowers the energy of the

atomic system. In this way, the cavity mediates infinite range checkerboard in-

teraction between the atoms. The checkerboard pattern of the atoms breaks a

discrete translational symmetry in the system, along the cavity axis. The infinite

range interactions compete with quantum tunneling and short range interactions

to produce a rich variety of phases for the atoms, including charge density wave,

Mott insulator, superfluid and supersolid phases. Here, the supersolid phase has

both charge density wave and superfluid order. We explored the phase diagram of

this system using a variational approach. The presence of infinite range interac-

tions restricts us from using local approximations for our variational parameters.

Therefore, we calculated the phase diagram for this system by numerically min-

imizing the variational energy in a high-dimensional space: 2450 dimensions in

our case. Our numerical results for the phase diagram agree well with the phase

diagram measured by the Zurich group. In addition, we pointed out additional

phase boundaries present in their experimental data, which would be uncovered
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via further analysis of their data. Our results were published in the article Physical

Review A 94, 033631, in co-authorship with Prof. Erich Mueller.

In 2016, the same group of experimenters at Zurich performed a similar ex-

periment, in which they trapped 87Rb atoms simultaneously inside two optical

cavities aligned orthogonal to each other [91]. The researchers do not shine ex-

ternal lasers along the cavity axes in this experiment. When the detuning of the

pump laser from the two optical cavities is equal, both the cavities are equally

susceptible to support a macroscopic occupation of the respective cavity mode. In

this regime, the system spontaneously chooses the strength of the electric field in

the two cavities. The resulting interference pattern of the light from the two cav-

ities spontaneously breaks a continuous translational symmetry. In this case, the

atoms have supersolid order which breaks a continuous translational symmetry.

Researchers at Stanford University have also performed other related experi-

ments where they trap 87Rb atoms in a nearly confocal cavity [82]. In the ideal

limit where the radius of the end mirrors equals the length of the cavity, the cavity

supports an infinite number of degenerate modes at all multiples of the funda-

mental frequency. If the pump laser is tuned near one of the harmonics of the

fundamental frequency, then all the cavity modes at that harmonic contribute to

an effective interaction between the atoms trapped in the cavity. Kollar et al [82]

consider a cavity in the few-mode-degenerate regime. They can dynamically tune

the length of the cavity, which allows them to adjust the number of modes that

couple to the atoms in a limited manner. When the atoms couple to a few modes,

the effective interaction mediated by the cavity still has a global range, and drives

the atoms towards checkerboard order with domains. For example, if the atoms

couple only to the TEM01 mode, which is antisymmetric under inversion across the
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x axis, then the atoms arrange in a checkerboard order with a larger occupation on

the even sites for x > 0, and on the odd sites for x < 0. As more modes couple to

the atoms, the range of the interaction shrinks. In Appendix B, we calculate the

effective interaction mediated by the cavity in the infinite-mode-degenerate (i.e

ideal confocal) cavity regime. We find that the cavity-mediated interaction has

two contributions: a local short range interaction centered at an atom’s location

(x, y), and a nonlocal short range interaction centered at (−x,−y). Such a nonlo-

cal interaction is novel. We believe that such a novel interaction could be exciting

and useful. A similar calculation by Ref. [81] did not find the nonlocal part of the

interaction.

We have also explored methods to simulate iconic models in condensed matter

phenomena, namely the Kondo effect and quantum dimer models. We proposed

a method to produce spin dependent interactions between atoms with no orbit

angular momentum (l = 0), using an optical Feshbach resonance. We induce a

resonance between pairs of atoms by shining a laser tuned near a transition to

an excited molecular state. When the detuning of the laser is large compared to

the linewidth of the molecular state, second order perturbation theory gives rise

to a local spin-dependent rotationally symmetric pairwise atom-atom interaction.

This method to produce spin dependent interactions between the atoms was first

outlined in our work published in Physical Review A 93, 023635 (2016).

To produce the Kondo model, we considered a mixture of ultracold 6Li and 87Rb

atoms in Chapter 4. The 6Li atoms act as itinerant fermions, and 87Rb atoms are

analogs of massive spin impurities in the conventional Kondo effect. The optical

Feshbach resonance outlined above produces a Kondo-type spin-dependent inter-

action between the 6Li and 87Rb atoms. The spin-dependent interaction produces
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spin dynamics during a scattering event between a 6Li and a 87Rb atom. This

is crucial to observe an enhancement in the scattering cross section at low tem-

peratures. To observe this enhancement, we propose launching the 87Rb gas into

the 6Li gas, and measuring the final momentum of the 6Li gas. We calculated the

momentum exchanged between the 87Rb and 6Li gases during this scattering ex-

periment, perturbatively to third order in the interaction strength. We show that

the momentum exchanged varies nonmonotonically with temperature. In partic-

ular, the momentum exchanged has an experimentally detectable minimum at a

characteristic temperature, and increases logarithmically below this temperature,

analogous to the electrical resistivity of magnetic alloys in the conventional Kondo

effect. Our work was published in the article Physical Review A 93, 023635 (2016),

in co-authorship with Prof. Erich Mueller.

Next, I entered into a collaboration with Prof. Erich Mueller, Prof. Michael

Lawler, and Todd Rutkowski, and proposed a method to produce a quantum dimer

model for bosonic atoms (see Chapter 5). We considered a gas of bosons with

no orbital angular momentum, l = 0, and a relatively large hyperfine spin f .

Candidate atoms could be 87Rb, which has f = 2, and 52 Cr, which has f = 3. We

imagined loading these atoms in a deep optical lattice, and tuning to the regime

where the occupation on the lattice sites is unity. We induced an optical Feshbach

resonance, and tuned to the regime where the net interaction in the hyperfine spin

singlet channel is smaller than the interaction in the other hyperfine spin channels,

but larger than the tunneling between lattice sites. In this regime, virtual hopping

drives the atoms to entangle in hyperfine spin singlets with neighboring atoms. The

resulting theory has the form of a quantum dimer model. In the limit of large f , we

found a rich variety of ground states in different lattice geometries: columnar phase

on a square lattice,
√

12×
√

12 phase on a triangular lattice, and a plaquette phase
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on a hexagonal lattice. The ground state on a cubic lattice is a matter of theoretical

debate. We also calculated the ground state for different lattice geometries and

different values of the hyperfine spin f , using an exact diagonalization of a small

system. Our calculations indicated that the ground states for a typical value of

f = 3 are the same as those for a large f . We proposed using a combination of

resonant photoassociation and quantum gas microscopy to experimentally image

dimer bonds, and measure dimer-dimer correlations in the system. We produced

numerical calculations of dimer-dimer correlations for different lattice geometries

and hyperfine spins f , on a small system. We are currently preparing an article

on this work for publication in a peer-reviewed journal.

Experimenters have not yet produced tunable spin dependent interactions be-

tween atoms. Optical Feshbach resonances are rarely used as the primary mech-

anism to tune inter-atom interactions. Some researchers have attempted to tune

the scattering length of a gas using an optical Feshbach resonance in conjunction

with a magnetic Feshbach resonance [28, 53]. To date, the largest change in scat-

tering length obtained using this scheme is ∼ 180a0 in a gas of 133Cs atoms [28]. In

comparison, in that experiment, the background scattering length in the presence

of a magnetic field was 950a0. We calculated that our proposal to optically induce

spin-dependent interactions between atoms in a gas requires a large laser intensity

∼ 1 MW/cm2.

Producing a reasonably large tunable rotationally symmetric spin dependent

inter-atom interaction would have several immediate applications. As we have

discussed in this dissertation, it would allow us to produce several iconic models

in condensed matter physics, namely the Kondo model and the quantum dimer

model. Apart from these, we can explore spinor phases for homogeneous spinor
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gases by spin dependent interactions in them. Researchers have proposed exotic

phases and phase diagrams for homogeneous spinor gases at finite temperature and

finite values of the spin-dependent interaction [118].

We also imagine that our techniques for producing spin dependent interac-

tion can be adapted to measure spin correlations in ultracold gases. For example,

researchers are interested in extracting spin correlations in ultracold Fermi gases

loaded in a deep lattice, at half filling. These experiments are motivated by studies

of antiferromagnetic phases of electrons at half filling in superconducting materials

with a high Tc. In these systems, adjacent electrons are entangled in spin singlets.

Researchers on ultracold fermions extract long range correlations in the azimuthal

spins of ultracold fermions on a lattice, by imaging the different spin species in-

dependently [127]. We imagine that one could directly image spin entanglement

between adjacent fermions on the lattice, using the resonant photoassociation that

we have outlined earlier. Measurements of spin entanglement between nearest

neighbor fermions would complement current efforts to measure azimuthal spin

correlations.

In Chapter 6, Prof. Erich Mueller and I developed semiclassical tools to ex-

plore the dynamics of ultracold fermionic superfluids. We used Wigner functions

to model the Fermi gas, and showed that the equations of motion of the Wigner

functions resembled semiclassical Boltzman equations. In the strongly interacting

regime, our tools are complementary to computing the dynamics by integrating

time-dependent Bogoliubov-de-Gennes equations. In this regime, we integrated the

semiclassical Boltzman equations in phase space, and showed that these equations

led to the Gross Pitaevskii equation. In the weakly interacting regime, our tools are

complementary to integrating time-dependent Bogoliubov-de-Gennes equations at
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short times. At long times, our semiclassical tools are unstable to numerical errors

due to sharp variations in the order parameter. We compared results of numeri-

cal integrations of semiclassical Boltzman, time-dependent Bogoliubov-de-Gennes,

and Gross-Pitaevskii equations in different regimes of interaction. We found

that the dynamics computed from the semiclassical method were in agreement

with methods that used Gross-Pitaevskii or time-dependent Bogoliubov-de-Gennes

equations in the strongly interacting regime, and time-dependent Bogoliubov-de-

Gennes methods in the weakly interacting regime at short times.

We hope that our explorations provide useful input to the community research-

ing on ultracold atoms. In the case of projects where we made proposals for experi-

ments, our greatest reward would be an experiment that implements our proposal.

In the case of projects where we model experiments, our greatest reward would be

an experiment that builds on the understand provided by our model. We hope the

reader found this dissertation useful, and enjoyed reading it as much as I enjoyed

writing it.
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APPENDIX A

MAJORANA FERMIONS

A.1 Superfluid gap from nearest-neighbor interactions

Nearest-neighbor interactions in the tight-binding model [Eq. (2.2)] for the “a”

atoms in an optical lattice lead to a superfluid gap ∆, given implicitly by the gap

equation,

−1

V
=

1

N

∑

k

sin2 ka√
(2J cos ka− µ)2 + (2∆ sin ka)2

, (A.1)

where N is the number of lattice sites, a is the lattice constant, V is the nearest-

neighbor interaction strength, J is the hopping amplitude, and allowed momenta

k = 2nπ
Na
, (n = 0, 1, ..N−1) are summed over. J is typically controlled by the depth

of the optical lattice, and V depends on the parameters dictating the mechanism

creating nearest-neighbor interactions, and the s-wave scattering length if applica-

ble. Below we calculate the superfluid gap created in three different mechanisms

producing nearest-neighbor interactions.

A.1.1 Dipolar molecules

Dipolar molecules such as KRb or LiCs have nearest-neighbor dipole-dipole inter-

actions. The interaction strength of two molecules at adjacent lattice sites, with

dipole moments ~d1 and ~d2 is

V =
~d1 · ~d2 − 3~d1 · r̂ ~d2 · r̂

4πε0a3
, (A.2)

where a is the lattice constant and r̂ is the unit vector joining the two lattice sites.

For typical dipole moments of the order of 10 D and typical lattice spacings of
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a few µm, this interaction strength is on the order of a few kHz. For hopping

amplitudes of a few kHz, Eq. (A.1) results in a superfluid gap of the order of kHz.

A.1.2 Artificial spin-orbit coupling

Nearest-neighbor interaction arises in spin-orbit coupled gases as an effective in-

teraction between atoms in dressed states (the helicity states). The Hamiltonian

describing the bare atoms is

Ĥ =
∑

k

(
â†↑k+kl

â†↓k−kl

)



εk+kL Ω

Ω εk−kL







â↑k+kl

â↓k−kl


+ V

∑

i

â†↑iâ
†
↓iâ↓iâ↑i

(A.3)

where the Raman coupling strength Ω will dictate the energy gap between the two

helicity states, εk = −2J cos ka is the kinetic energy due to tunneling in an optical

lattice. For small momenta, the spin-orbit coupling strength is −2Ja sin kLa, where

kL is the recoil momentum due to a Raman photon. The effective nearest-neighbor

interaction between two atoms in the lower helicity state is

Veff ' V

(
2J

Ω
sin kLa

)2

(A.4)

for Ω >> 2J . Jeff ' J cos kLa is the effective hopping amplitude between atoms

in dressed states. For typical scattering lengths of the order of 100 Bohr radii at

Feshbach resonance and typical hopping amplitudes of a few kHz, the superfluid

gap from Eq. (A.1) is a few kHz.
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Figure A.1: (Color online) Schematic of a deep spin-dependent lattice and a trans-
verse magnetic field.

A.1.3 Spin-dependent lattices

Another way to create strong nearest-neighbor interactions between atoms is to

increase the overlap between Wannier functions at two adjacent sites on an optical

lattice. For example, consider the spin-dependent lattice along the x direction

illustrated in Fig. A.1, with its spin-quantization axis along the z direction. The

sites for ↑-spins are shifted by half a lattice constant relative to the sites of the

↓-spins. Equivalently, we can consider a superlattice with ↑-spins on the even sites

and ↓-spins on the odd sites. In the presence of a transverse magnetic field Bŷ,

this system can be modeled by the Hamiltonian

Ĥ =

∫
dx
−~2

2m

∑

σ

(
ψ̂†σ(x)

∂2

∂x2
ψ̂σ(x)

)

+ U0 cos2 πx

a
ψ̂†↑(x)ψ̂↑(x) + U0 sin2 πx

a
ψ̂†↓(x)ψ̂↓(x)

− µ0B(ψ̂†↑(x)ψ̂↓(x) + ψ̂†↓(x)ψ̂↑(x)) + gψ̂†↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x),

(A.5)

wherem is the mass of the fermion, U0 is the lattice depth, µ0 is the Bohr magneton,

and g is the on-site interaction strength. Here ψ̂↑(x) =
∑

i â2i↑φ(x − x2i) and

ψ̂↓(x) =
∑

i â2i+1↓φ(x − x2i+1) are field operators for ↑-spins and ↓-spins, where

âiσ annihilates a fermion with spin σ at site i, φ(x) is the Wannier function, xi

are the positions of the lattice sites, and all sites i have been summed over. The
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first term in Eq. (A.5), which gives rise to hopping between sites with the same

spin on the lattice, can be quenched by increasing the lattice depth. The magnetic

field enables the fermions to hop between adjacent sites on the superlattice while

flipping their spin. The last term in Eq. (A.5) gives rise to interactions between

adjacent fermions with opposite spin. This is clearly illustrated by rewriting the

Hamiltonian in terms of new operators b̂2i = â2i↑, b̂2i+1 = â2i+1↓ as

Ĥ =
∑

i

−Jeff (b̂†i b̂i+1 + h.c) + Veff b̂
†
i b̂
†
i+1b̂i+1b̂i. (A.6)

This is equivalent to a model for a gas of spinless fermions with nearest-neighbor

interactions on an optical lattice. Direct computation yields

Jeff = µ0B

∫
dxφ∗(x)φ(x− a/2) (A.7)

and

Veff = g

∫
dx|φ(x)|2|φ(x− a/2)|2. (A.8)

Magnetic fields of a few Gauss lead to hopping amplitudes in the MHz range.

If we tune the interaction strength to a few MHz via a Feshbach resonance, the

superfluid gap from Eq. (A.1) would be on the order of a few MHz.

A.2 Edge modes

The creation operator for the zero-energy quasiparticle has the form

γ̂†edge =
∑

j

f0(j)

(
â†j + âj

2
+ i

â†N+1−j − âN+1−j

2i

)
. (A.9)

Demanding that the quasiparticle created by this operator has zero energy leads

to difference equations governing the coherence factors f0(j),

(J −∆j−1)f0(j − 1) + (J + ∆j+1)f0(j + 1)− µf0(j) = 0, 1 < j < N, (A.10)
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For the non-self-consistent case of uniform ∆j = ∆, these equations are solved by

assuming a solution of the form f0(j) = αxj+ + βxj−. α and β are determined by

the boundary conditions

f0(2) = µ
J+∆

f0(1), if ∆ > 0,

f0(N − 1) = µ
J−∆

f0(N), if ∆ < 0,
(A.11)

and the normalization condition

∑

j

∣∣∣∣
f0(j) + f0(N + 1− j)

2

∣∣∣∣
2

+

∣∣∣∣
f0(j)− f0(N + 1− j)

2

∣∣∣∣
2

= 1. (A.12)

The difference equations yield

x± =
µ

2(J + ∆)
±
√(

µ

2(J + ∆)

)2

+
∆− J
∆ + J

, (A.13)

and the boundary conditions yield α = −β if ∆ > 0, and α = −
(
x−
x+

)N+1

β if

∆ < 0.
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APPENDIX B

ATOMIC INTERACTIONS MEDIATED BY AN IDEAL

CONFOCAL CAVITY

Here, we calculate the effective interactions between bosonic atoms trapped in a

transversely pumped ideal confocal cavity, where the interactions are mediated by

superradiant light in the cavity. A cavity mode is described by three numbers—two

integers l and m for the transverse shape, and one integer n for the wavelength.

The frequency of a cavity mode parameterized by n, l, and m is

ωnlm =
πc

L

(
n+

l +m+ 1

π

)
cos−1

√(
1− L

R1

)(
1− L

R2

)
, (B.1)

where L is the length of the cavity, and R1 and R2 are the radii of the end mirrors.

The wavelength is related to n as λn = 2L/n. In an ideal confocal optical cavity,

where R1 = R2 = L, the frequency of the modes has the simple form

ωnlm =
πc

L

(
n+

l +m+ 1

2

)
. (B.2)

In this case, the cavity has a fundamental frequency of πc
2L

. There are an infinite

number of degenerate modes at every harmonic; here, the harmonic frequencies are

multiples of πc
2L

. All the degenerate modes at one frequency have the same parity

of l +m. The transverse shape of a mode parameterized by n, l and m is

E⊥nlm(x, y) = E0e
−(x2+y2)/2w2(z)Hl(x/

√
2w(z))Hm(y/

√
2w(z))√

2l+ml!m!
, (B.3)

where the cavity lies along the z direction, w(z) is the width of the mode at

longitudinal position z, R(z) is the curvature of the mode, and Hl is a Hermite

Gaussian function. The mode shape does not depend on n.

We consider the setup in Ref. [82], where bosonic atoms are trapped in a lattice

in the confocal cavity. We assume that the lattice is deep in the y direction. When
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the cavity is transversely pumped in the x direction by a laser of frequency ω

near one of the mode frequencies ωnlm, the cavity modes mediate pairwise effective

interactions between the trapped atoms. Let us denote the positions of the atoms

by (x1, y1, z1), . . . , (xn, yn, zn). Following the methods in [99], the Hamiltonian

modeling the effective pairwise interaction between the atoms, in first quantization,

is

Hint = Uint

∑

lm

(∑n
i=1 cos kxi cos knziE

⊥
nlm(xi, yi)

)2

∆nlm

, (B.4)

where kn = 2π/λn is the wavenumber of the mode, and k = 2π/λ is the wavenum-

ber of the pump. In Eq. (B.4), Uint is an interaction coefficient that depends on

optical coupling strengths, and ∆nlm = ω−ωnlm is the detuning of the pump from

the cavity mode. We assume the pump frequency is tuned close to an odd multiple

of πc/2L. In this case, only one infinite set of degenerate modes couple to the

atoms, i.e ∆nlm = ∆ is a constant. All the modes that couple to the atoms have

the same integer value of n + l+m+1
2

. In particular, l + m is an even number. We

find from Eq. (B.4) that the interaction between a pair of atoms at ~r1 = (x1, y1, z1)

and ~r2 = (x2, y2, z2) is

Hint(~r1, ~r2) =
2Uint

∆

∑

lm
ωnlm=ω

cos kx1 cos knz1 cos kx2 cos knz2E
⊥
nlm(x1, y1)E⊥nlm(x2, y2).

(B.5)

In the sum in Eq. (B.5), the value of n is such that ωnlm is a constant. The

contributions from a mode parameterized by l and m grows smaller as l and m

increase; this is because the strength of the mode grows smaller. Therefore, signif-

icant contributions come only from terms in the sum up to critical values lc and

mc. We assume the wavenumber kn is sufficiently large that kn−lc−mc ∼ kn ∼ k. In

this case, all the cosine terms in Eq. (B.5) can be pulled out of the sum. Since the

contributions to the sum from modes beyond lc and mc is negligible, we extrapolate
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the limits for l and m in the sum in Eq. (B.5) to be ∞, still assuming that kn is

a constant.

We calculate the expression
∑

lmE
⊥
nlm(x1, y1)E⊥nlm(x2, y2) using the generating

functional of Hermite Gaussian functions:

∞∑

n=0

zn

n!
Hn(α) = e−z

2+2zα. (B.6)

We obtain the result

∞∑

l=0

Hl(α)Hl(β)

2ll!
=

2

π

∫
d2z e−2|z|2e−z

2+2zαe−z̄
2+2z̄α

=
√
πeα

2

δ(α− β),

where z̄ is the complex conjugate of z, and δ is the Dirac delta function. Similarly,

we obtain

∞∑

l=0,l∈even

Hl(α)Hl(β)

2ll!
=

√
π

2
eα

2

(δ(α− β) + δ(α + β)) ,

∞∑

l=0,l∈odd

Hl(α)Hl(β)

2ll!
=

√
π

2
eα

2

(δ(α− β)− δ(α + β)) .

(B.7)

The sum in Eq. (B.5) involves l and m of the same parity, to keep ωnlm a constant.

Using the results in Eq. (B.7), we calculate the desired expression

∑

l+m∈even
E⊥nlm(~r1)E⊥nlm(~r2) =

π

4

(
δ(2) (~r1⊥ − ~r2⊥) + δ(2) (~r1⊥ + ~r2⊥)

)
, (B.8)

where ~r⊥ is the projection of ~r onto the x-y plane. The effective pairwise interaction

between two atoms is

Hint(~r1, ~r2) =
πUint

2∆
cos kx1 cos knz1 cos kx2 cos knz2

(
δ(2)

(
~r1⊥ − ~r2⊥
w(z)

)
+ δ(2)

(
~r1⊥ + ~r2⊥
w(z)

))
.

(B.9)

A calculation for the case where ω is tuned near an even multiple of πc
2L

yields a

similar form of the interaction, with a relative minus sign between the Dirac delta

functions.
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We remark that the effective interaction obtained in Eq. (B.9) has an unusual

form: the interaction is short ranged due to its Dirac delta form, but is nonlocal

because one of the Dirac delta functions is centered at ~r1⊥ = −~r2⊥. The form of

this interaction seems to suggest that each atom at ~r1 +(x1, y1, z1) has a shadow at

~r2 = (−x1,−y1, z1), and the atoms other interact with this atom and its shadow

with a short ranged interaction.
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APPENDIX C

THE KONDO EFFECT: MOMENTUM EXCHANGED IN A

SCATTERING EXPERIMENT

C.1 Calculation of the momentum transfered

Here we calculate nkαm(t) in Eq. (4.11) and ~P (t) in Eq. (4.12). The standard way

to calculate quantities like nkαm(t) is using the S-matrix [98]:

nkαm(t) = 〈T Ŝb̂Mbv,m(0)â†kα(t)âkα(t)b̂†Mbv,m
(0)〉0,

Ŝ = e−i
∫
dτĤint(τ),

(C.1)

where T orders the operators along a path shown in Fig. C.1 which starts at time

0, passes through time t, and returns to time 0. All our integrals over time follow

this path. The notation 〈〉0 implies that all operators inside 〈〉0 evolve according

to

âkα(t) = eiĤ0t/~âkαe
−iĤ0t/~,

b̂kµ(t) = eiĤ0t/~b̂kµe
−iĤ0t/~,

(C.2)

and states are weighted by e−βĤ0 . Since Ĥ0 is quadratic in âkα and b̂kµ, the right-

hand side of nkαm(t) in Eq. (C.1) can be contracted using Wick’s theorem. As a

result, nkαm(t) can be expressed diagrammatically as a sum of Feynman’s diagrams.

We calculate these Feynman’s diagrams up to O(g3
s) and O(g3

n) in the long time

limit.

C.1.1 Feynman rules

We denote the propagator for fermions, 〈T âkα(t1)â†kα(t2)〉0, by a solid line, and

the propagator for bosons, 〈T b̂kµ(t1)b̂†kµ(t2)〉0, by a dotted line, depicted in Figs.
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t

0

0

Time

Figure C.1: In our integrals, time begins at 0, passes through t, then returns to 0.
Our perturbation theory requires ordering operators along this path.

C.2(a) and C.2(b). Their values are

〈T âkα(t1)â†kα(t2)〉0 = e−iεk(t1−t2) (Θ(t1 − t2)− fk) ,

〈T b̂kµ(t1)b̂†kµ(t2)〉0 = e−iEk(t1−t2)Θ(t1 − t2).

(C.3)

In Eq. (C.3), Θ(t1 − t2) = 1 if t1 is after t2 along the path in Fig. C.1, and 0

otherwise.

We perturbatively expand nkαm(t) in the vertex depicted in Fig. C.2(c), whose

value is

k2, α
k4, µ

k1, β
k3, ν =

(2π)3

V 2
δ(k1 + k3 − k2 − k4)

(
gs~σ

(1/2)
αβ · ~σ(S)

µν + gnδαβδµν

)
. (C.4)

The vertex denotes a scattering event between a fermion and a boson. The time

at which this scattering event occurs is integrated over the path in Fig. C.1. All

momenta and spin projections are summed/integrated over, with the constraint

that momenta and spin are conserved at each vertex. The diagrams which con-

tribute to Eq. (C.1) have four external propagators. There is an incoming and

outgoing fermion propagator evaluated at time t, and carrying momentum ~~k and

spin projection α. There is also an incoming and outgoing boson propagator eval-

uated at time 0, and carrying momentum Mb~v and spin projection m. All lines

and vertices in a Feynman diagram can be labeled using the rules described above.

Therefore we omit labels. Finally, each diagram carries a multiplicity, which is the

number of times it appears in the expansion of Eq. (C.1) in powers of gs and gn.
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(a)

kαt2 t1

(b)

kµt2 t1 (c)

k2, α

k4, µ

k1, β

k3, ν
t

Figure C.2: Diagrammatic representation of vertex and propagators. (a) Solid line
denotes a fermion propagator which propagates a fermion with momentum k and
spin projection α from time t2 to t1. (b) Dashed line denotes a boson propagator
which propagates a boson with momentum k and spin projection µ from time t2
to t1. (c) A vertex denotes the matrix element for a Bose-Fermi scattering event.
Mathematical expressions are given in Eqs.(C.3) and (C.4).

C.1.2 Calculation of nkαm(t)

Terms of O(gns,n) in the perturbative expansion of nkαm(t) contain 2n + 2 pairs

of operators leading to (n + 1)!2 contractions. The resulting number of diagrams

increases exponentially with n. We explicitly consider each order and evaluate the

nonzero diagrams.

Zeroth order

The expression for the zeroth-order term in the expansion of nkαm(t) is

n
(0)
kαm(t) = 〈T b̂Mbv,m(0)â†kα(t)âkα(t)b̂†Mbv,m

(0)〉0. (C.5)

134



Figure A.3: Zeroth-order diagram in the expansion for nkαm(t).

(a) (b)

(c) (d)

Figure A.4: First order diagrams in the expansion of nkαm(t).

Using Wick’s theorem,

n
(0)
kαm(t) = ⟨b̂Mbv,m(0)b̂†

Mbv,m(0)⟩0⟨â†
kα(t)âkα(t)⟩0

= fk.

(A.6)

The corresponding Feynman diagram is shown in Fig. A.3. Since the bosons and

fermions do not interact at this order, n
(0)
kαm does not contribute to any momentum

transfer.

First order

The first order term in the expansion for nkαm(t) is

n
(1)
kαm(t) = −i

∫
dτ1⟨TĤint(τ1)b̂Mbv,m(0)â†

kα(t)âkα(t)b̂†
Mbv,m(0)⟩0. (A.7)

By Wick-contracting the above expression, we find that n
(1)
kαm(t) is the sum of the

4

Figure C.3: Zeroth-order diagram in the expansion for nkαm(t).

Using Wick’s theorem,

n
(0)
kαm(t) = 〈b̂Mbv,m(0)b̂†Mbv,m

(0)〉0〈â†kα(t)âkα(t)〉0

= fk.

(C.6)

The corresponding Feynman diagram is shown in Fig. C.3. Since the bosons and

fermions do not interact at this order, n
(0)
kαm does not contribute to any momentum

transfer.

First order

The first order term in the expansion for nkαm(t) is

n
(1)
kαm(t) = −i

∫
dτ1〈TĤint(τ1)b̂Mbv,m(0)â†kα(t)âkα(t)b̂†Mbv,m

(0)〉0. (C.7)

By Wick-contracting the above expression, we find that n
(1)
kαm(t) is the sum of the

four diagrams shown in Fig. C.4, all of which evaluate to zero. For example,

=

∫
dτ

(
1

2
gsm+ gn

)
= 0. (C.8)

Due to the same reason, Figs. C.4(b), C.4(c) and C.4(d) are also zero. Therefore,

1

3

∑

m

n
(1)
kαm(t) = 0. (C.9)

Moreover, the same reasoning implies that all higher-order diagrams in which a

fermion or boson loop begins and ends at the same vertex are also zero.
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Figure A.3: Zeroth-order diagram in the expansion for nkαm(t).

(a) (b)

(c) (d)

Figure A.4: First order diagrams in the expansion of nkαm(t).

Using Wick’s theorem,

n
(0)
kαm(t) = ⟨b̂Mbv,m(0)b̂†

Mbv,m(0)⟩0⟨â†
kα(t)âkα(t)⟩0

= fk.

(A.6)

The corresponding Feynman diagram is shown in Fig. A.3. Since the bosons and

fermions do not interact at this order, n
(0)
kαm does not contribute to any momentum

transfer.

First order

The first order term in the expansion for nkαm(t) is

n
(1)
kαm(t) = −i

∫
dτ1⟨TĤint(τ1)b̂Mbv,m(0)â†

kα(t)âkα(t)b̂†
Mbv,m(0)⟩0. (A.7)

By Wick-contracting the above expression, we find that n
(1)
kαm(t) is the sum of the

4

Figure C.4: First order diagrams in the expansion of nkαm(t).

(a) (b)

Figure A.5: Two of the diagrams that are zero at second order.

four diagrams shown in Fig. A.4, all of which evaluate to zero. For example,

=

∫
dτ

(
1

2
gsm + gn

)
= 0. (A.8)

Due to the same reason, Figs. A.4(b), A.4(c) and A.4(d) are also zero. Therefore,

1

3

∑

m

n
(1)
kαm(t) = 0. (A.9)

Moreover, the same reasoning implies that all higher-order diagrams in which a

fermion or boson loop begins and ends at the same vertex are also zero.

Second order

The second order term,

n
(2)
kαm(t) = −1

2

∫
dτ1dτ2⟨TĤint(τ1)Ĥint(τ2)b̂Mbv,m(0)â†

kα(t)âkα(t)b̂†
Mbv,m(0)⟩0,

(A.10)

can be contracted into Wick pairs in 36 ways, which give rise to 20 different

diagrams. Most of these diagrams are zero because of reasons explained in the

previous sections. In addition, the diagrams shown in Fig. A.5 also evaluate to

zero. For example, since we work in the dilute boson limit, there can only be

5

Figure C.5: Two of the diagrams that are zero at second order.

Second order

The second order term,

n
(2)
kαm(t) = −1

2

∫
dτ1dτ2〈TĤint(τ1)Ĥint(τ2)b̂Mbv,m(0)â†kα(t)âkα(t)b̂†Mbv,m

(0)〉0,

(C.10)

can be contracted into Wick pairs in 36 ways, which give rise to 20 different

diagrams. Most of these diagrams are zero because of reasons explained in the

previous sections. In addition, the diagrams shown in Fig. C.5 also evaluate to

zero. For example, since we work in the dilute boson limit, there can only be

one boson line in any time slice, implying that Fig. C.5(a) is zero. The only two

nonzero diagrams are shown in Fig. C.6.
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(a) (b)

Figure C.6: Nonzero diagrams at O(g2) in the expansion for nkαm(t).

Using our Feynman rules,

1

3

∑

m

=
2

V (2π)3

∫
d3~p (1− fk)fp

sin2 δεt/~
δε2

(
g2
s

S(S + 1)

2
+ 2g2

n

)
,

(C.11)

and

1

3

∑

m

= − 2

V (2π)3

∫
d3~p fk(1−fp)

sin2 δε′t/~
δε′2

(
g2
s

S(S + 1)

2
+ 2g2

n

)
,

(C.12)

where δε = 1
2

(
εk − εp − 1

2
Mbv

2 + (~~k−~~p−Mb~v)2

2Mb

)
and

δε′ = 1
2

(
εk − εp + 1

2
Mbv

2 − (~~k−~~p+Mb~v)2

2Mb

)
. Neglecting terms of order 1/Mb, δε =

δε′ = 1
2

(
εk−mav/~ − εp−mav/~

)
. The resulting second order contribution is

1

3

∑

m

n
(2)
kαm(t) = −g

2
s
S(S+1)

2
+ 2g2

n

V (2π)3

∫
d3~p (fk − fp)

sin2 tδε/~
δε2

. (C.13)

Since the bosons are much heavier than the fermions, they have nearly the same

velocity ~v before and after scattering. Therefore, it is easier to work in the bosons’

rest frame. For small ~v,

1

3

∑

m

n
(2)

k+mav
~ ,αm(t) =− g2

s
S(S+1)

2
+ 2g2

n

V (2π)3

∫
d3~p

(
fk − fp + ~~k · ~v∂fk

∂εk
− ~~p · ~v∂fp

∂εp

)

× sin2(t(εk − εp)/2~)

((εk − εp)/2)2
+O(v2, 1/Mb)

(C.14)

where O(v2, 1/Mb) refers to terms which scale as v2 or 1/Mb. The first two terms in

Eq. (C.14) have negligible contribution near εk = εp. At long times, any significant
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contribution comes from the tail of sin2(t(εk−εp)/2~)

((εk−εp)/2)2
, where sin2(t(εk− εp)/2~) can be

approximated by its average, 1/2. Hence their contribution saturates to a constant

at long times. For the last two terms in Eq. (C.14), which are significant near

εk = εp, we approximate sin2(t(εk−εp)/2~)

((εk−εp)/2)2
' 2tδ(εk−εp)

~ . Hence at long times,

1

3

∑

m

n
(2)

k+mav
~ ,αm(t) =− 2(g2

s
S(S+1)

2
+ 2g2

n)t

V (2π)3

∫
d3~p

(
~k · ~v∂fk

∂εk
− ~p · ~v∂fp

∂εp

)
δ(εk − εp)

+O

(
t0, v2,

1

Mb

)

=− 4
g2
s
S(S+1)

4
+ g2

n

V 2
t~k · ~v∂fk

∂εk
ρ(εk) +O

(
t0, v2,

1

Mb

)
,

(C.15)

where ρ(εk) is the three-dimensional density of states for a single spin projection.

In the laboratory frame,

1

3

∑

m

n
(2)
kαm(t) = −4

g2
s
S(S+1)

4
+ g2

n

V 2
t~k · ~v∂fk

∂εk
ρ(εk) +O

(
t0, v2,

1

Mb

)
. (C.16)

Third order

The third order term

n
(3)
kαm(t) =

i

6

∫
dτ1dτ2dτ3〈TĤint(τ1)Ĥint(τ2)Ĥint(τ3)b̂Mbv,m(0)â†kα(t)âkα(t)b̂†Mbv,m

(0)〉0
(C.17)

can be contracted into Wick pairs in 576 ways. However due to reasons explained

in earlier sections, all diagrams except the ones shown in Fig. C.7 are zero. Af-

ter a treatment similar to the one at second order, we calculate the third order

contribution to be

1

3

∑

m

n
(3)
kαm(t) =

1

V 2(2π)3

∫
d3~p t~v · ~kρ(εk)

∂fk
∂εk

1

εk − εp

(
fpg

3
sS(S + 1)− g3

s

S(S + 1)

2

−3g2
sgnS(S + 1)− 4g3

n

)
+O

(
t0, v2,

1

Mb

)
.

(C.18)
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(a) (b)

(c) (d)

(e) (f)

Figure C.7: Non-zero diagrams at O(g3) in the expansion for nkαm(t).

The right hand side of Eq. (C.18) consists of an ultraviolet divergent term arising

from
∫
d3~p 1

εk−εp , and a finite term
∫
d3~p fp

εk−εp which will ultimately give rise to a

logarithmic temperature dependence. The ultraviolet divergence is an artefact of

choosing a contact potential between the fermions and bosons which is nonzero only

when they are at the same location in space. In reality, the interaction between the

fermions and bosons has a finite range, which removes the ultraviolet divergence by

introducing an upper cutoff on the limits on the integral over momenta. The exact

details are unimportant if we express our results in terms of physical quantities.

To this effect, we define effective coupling constants g̃s and g̃n where

g̃2
s = g2

s

(
1 +

gs + 6gn
2(2π)3

∫
d3~p

1

εk − εp

)
,

g̃2
n = g2

n

(
1 +

gn
(2π)3

∫
d3~p

1

εk − εp

)
.

(C.19)
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The result for nkαm(t) has no ultraviolet divergences when expressed in terms of

g̃s and g̃n.

The resulting nkαm(t) at long times is

1

3

∑

m

nkαm(t) =fk −
4t~k · ~vρ(εk)

V 2

∂fk
∂εk

×
(
S(S + 1)

4
g̃2
s + g̃2

n −
g̃3
sS(S + 1)

4(2π)3

∫
d3~p

fp
εk − εp

)
.

(C.20)

C.1.3 Final momentum of the Fermi gas

The total momentum ~P of the Fermi gas [defined in Eq. (4.12)] will be along the

direction of ~v. Its magnitude is

|~P | =~v ·
~P

v
= − 8t~Nb

vV (2π)3

∫
d3~k

(
~k · ~v

)2 ∂fk
∂εk

ρ(εk)

×
(
S(S + 1)

4
g̃2
s + g̃2

n −
g̃3
sS(S + 1)

4(2π)3

∫
d3~p

fp
εk − εp

)
.

(C.21)

After integrating out the angular co-ordinates of ~k and ~p and performing a change

of variables,

|~P | =− 16maLNb

3~V 2

∫
dε ε

∂f(ε)

∂ε
ρ2(ε)

×
(
S(S + 1)

4
g̃2
s + g̃2

n −
g̃3
sS(S + 1)

4V

∫
dεp

ρ(εp)f(εp)

ε− εp

)
.

(C.22)

We evaluate the second order terms using a Sommerfield expansion,

|~P2| '
3maLNb

4~εF
J2S(S + 1)(1 + α2)

(
1 +

π2

6

(
kBT

εF

)2
)

+O

(
kBT

εF

)4

. (C.23)

where J = g̃s
N
V

and α = g̃n
g̃s

2√
S(S+1)

.

The third order terms are

|~P3| =
4S(S + 1)maLNb

3~

(
g̃s
V

)3 ∫
dε ε

∂f(ε)

∂ε
ρ2(ε)×

∫
dεp

ρ(εp)f(εp)

ε− εp
= −9S(S + 1)maLNb

16~ε9/2F

J3

∫ ∞

0

dε ε2
∂f(ε)

∂ε

∫ ∞

0

dεp
√
εp
f(εp)

ε− εp
.

(C.24)
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We simplify the above expression by performing integration by parts,

|~P3| =
9S(S + 1)maLNb

8~ε9/2F

J3

∫ ∞

0

dε ε2
∂f(ε)

∂ε
×
∫ ∞

0

dεpf(εp)

× ∂

∂εp

(
√
εp +

√
ε

2
log

∣∣∣∣
√
ε−√εp√
ε+
√
εp

∣∣∣∣
)

=− 9S(S + 1)maLNb

8~ε9/2F

J3

∫ ∞

0

dε ε2
∂f(ε)

∂ε
×
∫ ∞

0

dεp
∂f(εp)

∂εp

×
(
√
εp +

√
ε

2
log

∣∣∣∣
β(ε− εp)

β(
√
ε+
√
εp)2

∣∣∣∣
)
.

(C.25)

We split Eq. (C.25) into two terms. We evaluate one of these terms numerically,

∫ ∞

0

dε ε5/2
∂f(ε)

∂ε

∫ ∞

0

dεp
∂f(εp)

∂εp
log(β(ε−εp)) ' ε

5/2
F

(
0.26 + 5.2

(
kBT

εF

)2
)

+O

(
kBT

εF

)4

.

(C.26)

We use a Sommerfield expansion for the remaining term. The result is

|~P3| ' −
9S(S + 1)maLNb

8~ε2F
J3

(
1.13 +

(
2.6− π2

48

)(
kBT

εF

)2

+
1

2
log

kBT

4εF

(
1 +

5π2

12

(
kBT

εF

)2
))

+O

(
kBT

εF

)4

.

(C.27)

The final momentum of the Fermi gas is

~P =P0v̂

(
1 +

π2

6

(
kBT

εF

)2

− 3J

2(1 + α2)εF

(
1.13 +

(
2.6− π2

48

)(
kBT

εF

)2

+
1

2
log

kBT

4εF

(
1 +

5π2

12

(
kBT

εF

)2
)))

,

(C.28)

where P0 = 3S(S+1)Nb
8

(1 + α)2
(
J
εF

)2

(kFL) ~kF , and as before, we neglect terms of

O
(
t0, v2, 1

Mb
, T 4
)

.
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APPENDIX D

DERIVING A QUANTUM DIMER MODEL FOR MOTT

INSULATING BOSONIC ATOMS WITH A LARGE HYPERFINE

SPIN

D.1 Construction of an orthogonal basis

Here we construct an orthogonal basis from the non-orthogonal singlet coverings,

perturbatively in (2f + 1)−1. The singlet coverings contain both short and long

singlet bonds. We use the commutation relation

[Âij, Â
†
ij′ ] = δjj′

(
1 +

n̂i + n̂j
2f + 1

)
+

1− δjj′
2f + 1

∑

m

b̂jmb̂
†
j′,−m,

to calculate the overlap between states. We find that the overlap Sab = 〈a|b〉

between two singlet coverings |a〉 and |b〉 is

Sab = (2f + 1)Nloops

(
1√

2f + 1

)Lloops

, (D.1)

where Nloops is the total number of loops which include dimers not in common

between |a〉 and |b〉, and Lloops is the total number of sites in all loops. The

overlap matrix element is pictorially represented by a transition graph, shown in

Fig. D.1. For large f , we expand Sab in powers of (2f + 1)−1:

Sab = δab +
�ab

2f + 1
+

�(2)
ab

(2f + 1)2
. (D.2)

Here, �ab = 1 if |a〉 and |b〉 have different dimers in one loop with four sites, and

0 otherwise. The symbol �(2)
ab = 1 if the dimers in |a〉 and |b〉 differ in two loops

of four sites each, or in one loop with six sites. The expression for the orthogonal

dimer states [Eq. (5.5)] reduces to

|ā〉 = |a〉 −
∑

b

(
�ab

2(2f + 1)
+

�(2)
ab

2(2f + 1)2
− 3

8(2f + 1)2

∑

c

�ac�cb

)
|b〉+O

(
f−3
)
.

(D.3)
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Figure D.1: (Color online) Examples of transition graphs between non-orthogonal
singlet coverings. The magnitude of the overlap is given by Eq. (D.1). The overlap
Sab comes from 1 loop of length 4 (since it involves 4 sites), and represents the
largest possible overlap. The overlap Sac comes from 1 loop of length 6 (since it
involves 6 sites). In the large-f limit all singlet coverings become orthogonal.

Figure D.2: (Color online) Pictorial representation of an orthogonal dimer state
constructed from non-orthogonal singlet coverings, expressed in Eq. (5.5). A dimer
state |ā〉 and its associated singlet covering |a〉 differ by O(f−1) contribution from
all coverings |b〉 which differ from |a〉 by two bonds in a flippable plaquette.

One example of the calculation of a dimer state is pictorially represented in Fig.

D.2.

D.2 Deriving an effective dimer model

The Hamiltonian [Eq. (5.3)] contains terms Â†ijÂij restricted to nearest neighbor

pairs 〈ij〉 only. The action of one of these terms, Â†ijÂij, on a singlet covering |a〉

is:

Â†ijÂij |a〉 =





|a〉 , for (i, j) ∈ a

(2f + 1)−1 |(i, j) : a〉 , for (i, j) /∈ a
(D.4)
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where the notation |(i, j) : a〉 denotes a state where sites i and j are paired in a

singlet, the original partners of i and j in |a〉 are paired in another singlet, and all

the other bonds in |a〉 are left unchanged. An example of a singlet covering |a〉 and

a few of the related states |(i, j) : a〉 are illustrated in Fig. 5.1 in the main text.

To derive an effective model in the Hilbert space spanned by dimer states, we

first trivially rewrite the Hamiltonian in Eq. (5.3) as

Ĥ

2J2/U0

= −N̂nn −


∑

〈ij〉
Â00†
ij Â

00
ij − N̂nn


 (D.5)

where N̂nn counts the number of dimers which connect nearest neighbor sites. The

first term, −N̂nn, is diagonal in the dimer basis. The low energy eigenspace of −N̂nn

is spanned by the set of all nearest neighbor-only singlet coverings, which have a

degenerate eigenvalue −N/2, where N is the number of sites. The low energy

eigenspace of −N̂nn is separated from higher energy subspaces by at least 2J2/U0.

The second term in Eq. (D.5), V̂I = −
(∑

〈ij〉 Â
00†
ij Â

00
ij − N̂nn

)
, is a perturbing term,

with matrix elements of O
(

1
2f+1

)
. We use degenerate second order perturbation

theory in (2f + 1)−1 to expand V̂I in the subspace of nearest-neighbor only dimer

coverings:

V̂eff =
∑

ab

|ā〉
〈
b̄
∣∣
(〈

ā
∣∣∣V̂I
∣∣∣b̄
〉

+
∑

f

〈
ā

∣∣∣∣∣V̂I
1

N̂nn −N/2

∣∣∣∣∣f̄
〉〈

f̄
∣∣∣V̂I
∣∣∣b̄
〉)

. (D.6)

Here, |ā〉 and
∣∣b̄
〉

lie in the nearest-neighbor only space, and
∣∣f̄
〉

lie in the higher

energy subspace. The matrix element for V̂I between any two dimer states |ā〉 and
∣∣b̄
〉

is given by

〈
ā
∣∣∣V̂I
∣∣∣b̄
〉

= Nbδab −
∑

cd

(√
S−1

)
ac


NdScd +

1

2f + 1

∑

〈ij〉/∈d
Sc,(ij):d



(√

S−1
)
db
.

(D.7)
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Substituting Eqs. (D.2) and (D.7) in Eq. (D.6), we find that

V̂eff =
∑

ab

|ā〉
〈
b̄
∣∣

 −2

2f + 1
�ab −

∑

f

∑

〈ij〉/∈f

∑

〈i′j′〉/∈b
δa,(ij):fδf,(i′j′):b


 . (D.8)

The result of this expression depends on the lattice geometry. Here we focus on a

square lattice. The perturbing term V̂eff can be reduced to a simple form on other

lattices as well. On a square lattice, we find that

V̂eff =
∑

ab

|ā〉
〈
b̄
∣∣
( −2

2f + 1
�ab −

1

(2f + 1)2
(4��ab + 2δab (N +N p +N ))

)
.

(D.9)

Here, ��ab is 1 if |a〉 and |b〉 differ by three bonds within one six-site plaquette.

N counts the number of parallel bonds lying side by side in |a〉. N and N p

have similar meanings. Observing that

N +N p +N + 2N= + 2Nq = 3N/2,

where N is the number of sites, we rewrite Eq. (D.9) as

V̂eff =
∑

ab

|ā〉
〈
b̄
∣∣
(
− 2

2f + 1
�ab −

4

(2f + 1)2
��ab +

4δab
(2f + 1)2

(N= +Nq)−
9N/2

(2f + 1)2

)
.

(D.10)

The first term—containing �ab— gives the two-bond resonance term with an

amplitude t = 2
2f+1

2J2

U0
in ĤQDM [Eq. (5.6)]. The second term—containing ��ab—

gives the three-bond resonance term with an amplitude t′ = 4
(2f+1)2

2J2

U0
in ĤQDM

[Eq. (5.6)]. The third term—containing N= + Nq—gives an effective interaction

V = 4
(2f+1)2

2J2

U0
between two parallel bonds in a four-site plaquette in ĤQDM [Eq.

(5.6)]. The last term is a constant energy shift, which is irrelevant.

In summary, the effective dimer model for our system on a square lattice is

ĤQDM =
∑ −4J2/U0

2f + 1
(|=〉 〈q|+ H.c)− 8J2/U0

(2f + 1)2
(|=〉 〈=|+ |q〉 〈q|)− 8J2/U0

(2f + 1)2
(|=p〉 〈p=|+ H.c) .

(D.11)
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A similar calculation on other lattice geometries yields a similar effective model,

where the amplitudes of the various terms in the model are given in Table 5.1 in

the main text.
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